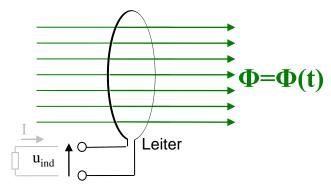

# **Synchronmaschine**

Synchronmaschine → Schenkel- und Vollpolmaschine überwiegende Anwendung → 1. Generator zur Elektroenergieerzeugung, 2. große Dauerantriebe auch Motor kombiniert mit Blindleistungskompensation.




Polrad ist Elektromagnet (Permanentmagnet) und erzeugt das Erregerfeld  $\mathbf{B}_{E}$  Generatorbetrieb: Leerlauf;  $\mathbf{u}_{ind} \rightarrow$  bei Last  $\mathbf{i}_{Ständer} \rightarrow \mathbf{L}_{S}$  verzögert  $\mathbf{i} \rightarrow \mathbf{B}_{S}$  Motorbetrieb:  $\mathbf{i}_{Ständer} \rightarrow$  Drehfeld  $\mathbf{B}_{SMot}$ ; mech. Leerlauf  $\rightarrow \mathbf{u}_{ind} = \mathbf{u}_{L} \rightarrow \mathbf{i}_{L} \approx 0$ ; Last  $\rightarrow \mathbf{i}_{Ständer}$   $\uparrow$  je mehr Polrad durch Last zurück desto  $\mathbf{i}_{Ständer} \uparrow$ ;  $\mathbf{d}\mathbf{B}_{E}/\mathrm{d}t$  neg.  $\rightarrow \mathbf{u}_{ind}$  neg.  $\rightarrow \mathbf{i}_{L}$ ,  $\mathbf{B}_{S} \downarrow$ 

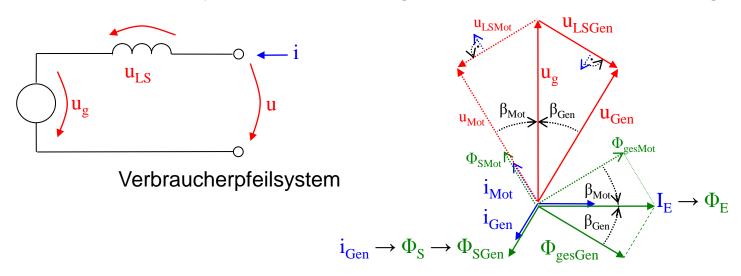


# zeitveränderliches Magnetfeld

# **Induktionsgesetz Ruheinduktion**

$$u_{ind} = w \frac{d\Phi}{dt}$$




Richtung von  $u_{ind}$  wiederum nach der Rechten-Hand-Regel Die Lenz'sche Regel ist auch hier unmittelbar erfüllt.

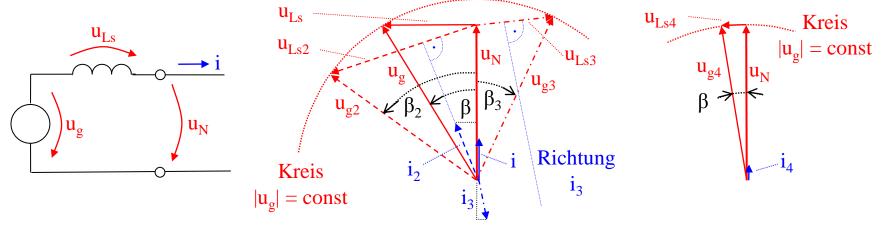




Generator Polradwinkel  $\beta_{Gen}$  in Drehrichtung voraus Motor Polradwinkel  $\beta_{Mot}$  in Drehrichtung hinterher

**Zeigerdarstellung** Spannungen, Ströme und **magnetischen Flüsse** → für Verbraucherpfeilsystem → eine der gleichen Phasen → Raumzeiger




vom  $\Phi_E$  induzierte Spannung  $u_g \to R$ ichtung des größten ( $d\Phi_E/dt$ ) Generatorbetrieb:  $i_{Gen}$  gegen die Richtung von  $u_{Gen}$  und  $u_{LS}$  geht  $90^\circ$  vor kapazitive oder induktive Last  $\to$  weniger oder mehr verzögert,  $\beta$ ,  $\phi = \langle u, i \rangle$  Motorbetrieb: zeigt  $i_{Mot}$  in Richtung von  $u_{Mot}$  und  $u_{LS}$  geht  $90^\circ$  vor

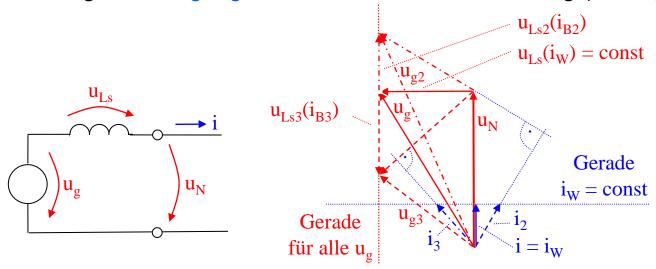
## Beim Betrieb der Synchronmaschine zwei Einflussmöglichkeiten:

- Vergrößerung/Verkleinerung Antriebsleistung  $\rightarrow \beta$  wird erhöht/verringert.
- Vergrößerung/Verkleinerung Erregung ( $\Phi_{E}$  bzw.  $I_{E}$ )  $\to$   $U_{g\,eff}$  erhöht/verringert.

# Parallelbetrieb zum starren Netz ( $U_N = const$ , $\omega_N = const$ , $\phi_U = const = 0$ ) einphasige Ersatzschaltung

1. Veränderung der Antriebsleistung bei konstanter Erregung (Erzeugerpfeilsystem)




Ausgangspunkt:  $u_N$ ,  $u_{Ls}$ ,  $u_g$  und i so, dass Einspeisung reiner Wirkleistung

*Erhöhung* der Antriebsleistung  $\rightarrow$  u<sub>N</sub>, u<sub>Ls2</sub>, u<sub>g2</sub>, i<sub>2</sub>  $\rightarrow$   $\beta_2$  >  $\beta$  *höherer* Wirkstrom

*Verringerung* der Antriebsleistung  $\rightarrow \beta_3$  (negativ) *Entnahme* Wirkleistung aus Netz

Veränderung der Antriebsleistung beeinflusst in der Praxis nur Wirkleistung.

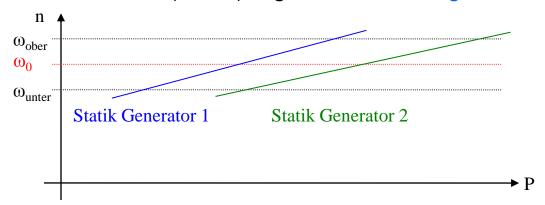
2. Veränderung der Erregung bei konstanter Antriebsleistung (Erzeugerpfeilsystem)



Ausgangspunkt:  $u_N$ ,  $u_{Ls}$ ,  $u_g$  und i so, dass Einspeisung reiner Wirkleistung

konstante Antriebsleistung → Wirkleistung, Wirkanteil des Stromes konstant,

- → Zeigerspitzen aller Ströme auf Gerade (i<sub>w</sub> = const)
- ightarrow Zeigerspitzen aller induzierten Spannungen  $u_g$  auf einer Geraden  $u_g$  wird vergrößert ightarrow induktive Last ightarrow der Strom  $(i_2)$  läuft gegen  $u_N$  nach  $u_g$  wird verkleinert ightarrow kapazitive Last ightarrow der Strom  $(i_3)$  läuft gegen  $u_N$  vor


Veränderung der Erregung  $u_g$  durch  $I_E$  beeinflusst nur Blindleistung.

#### Parallelbetrieb:

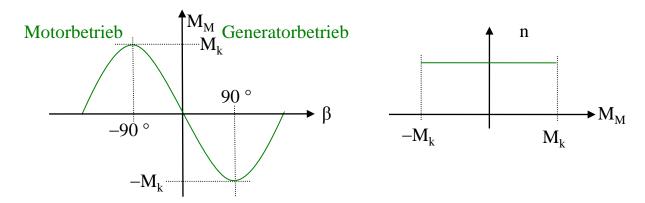
- → durch Einstellen (oder Regeln) der Antriebsleistung → Wirkleistungsübernahme
- → durch Einstellen (oder Regeln) der Erregung → Blindleistungsübernahme Für Parallelbetrieb von Generatoren → Leistungsanteile beteiligter Generatoren sind entsprechend aufzuteilen

Vergrößerung der Antriebsleistung → Drehzahlerhöhung → Erhöhung Netzfrequenz

**Zusammenwirken** von Generatoren: einzeln Drehzahlen der Antriebsmaschinen nach statischer Kennlinie (Statik) regeln → Aufteilung der Wirkleistung



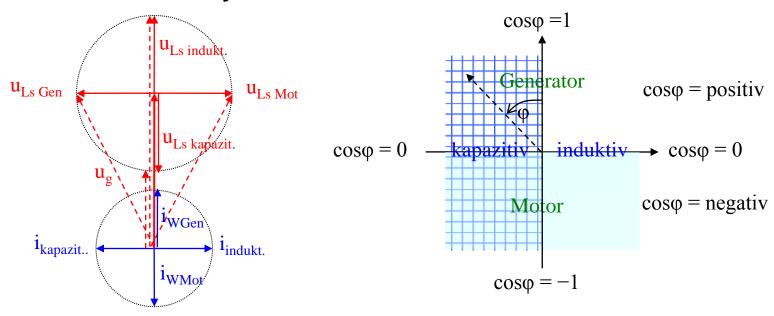
Netzfrequenz ist bei dieser Art der Regelung nicht konstant: Große Verbundnetze → Frequenzgenauigkeit < ±0,5% (49,75 bis 50,25 Hz)


Regelung Spannung  $U_N$  über Erregung  $\rightarrow$  Aufteilung der Blindleistung

#### **Inselbetrieb** eines einzelnen Generators:

Spannungsregler → Erregung so, dass Ausgangsspannung konstant bleibt. Drehzahlregler → Antriebsleitung so, dass die Frequenz konstant bleibt.

→ Anpassung an aktuelle Last (mit Wirk- und Blindanteil).


## Kennlinien der Synchronmaschine



Nur von -90 ° <  $\beta$  < 90 ° stabile Arbeitspunkte, Drehzahl bleibt völlig konstant

Überschreiten der Kippmomente  $\rightarrow$  Synchronmotor (-generator)  $\rightarrow$  "außer Tritt" Nennbetrieb in der Regel bei  $\pm 15$  bis  $\pm 30$  °

#### Betriebszustände der Synchronmaschine alle 360 °



## **Anlauf** einer Synchronmaschine:

- Hochfahren durch Fremdantrieb (Antriebsmaschine beim Generator)
- asynchroner Hochlauf mit zusätzlichem Kurzschlusskäfig oder
- Frequenzhochlauf (langsames Erhöhen der Frequenz bis Sollfrequenz (Anfangsfrequenz, bei der sich Motor allein in Synchronismus zieht)

## **Drehzahlregelung** nur Frequenzstellung

## Hauptanwendungsgebiete:

- Generatoren bis ca. 1000 MW (mit einem Wirkungsgrad von ca. 98,5%),
- Motoren für große Dauerlasten (z.B. Gebläseanlagen) in Kombination mit Blindleistungskompensation,
- Antriebsverbünde mit hohen Forderungen an synchronen Lauf
- in neuerer Zeit der Stromrichtermotor (umrichtergesteuerter Synchronmotor, bei dem z.B. ein Polradsensor die Frequenz steuert).

## Kühlung:

- Trotz hoher Wirkungsgrade ist bei großen Maschinen eine effektive Kühlung.
- Diese wird je nach Ausführung und Anwendung als Luft- oder auch Wasserkühlung vorgesehen.

# 2.4 Auswahl eines Motors für eine Antriebsaufgabe

Vor der Auswahl eines Motors → **Analyse** der Antriebsaufgabe

1. Ermittlung der benötigten Antriebsleistung, Drehzahl, Drehzahlstellung ...

- 2. Betriebsart, bei der Leistung umgesetzt wird. In VDE 0530 acht Betriebsarten
  - S1 Dauerbetrieb
  - S2 Kurzzeitbetrieb
  - S3 Aussetzbetrieb ohne Einfluss des Anlaufs auf die Erwärmung
  - S4 Aussetzbetrieb mit Einfluss des Anlaufs auf die Erwärmung
  - S5 Aussetzbetrieb mit Einfluss des Anlaufs und Bremsens auf die Erwärmung
  - S6 Durchlaufbetrieb mit Aussetzbelastung
  - S7 Unterbrochener Betrieb mit Anlauf und Bremsung
  - S8 Unterbrochener Betrieb mit periodisch wechselnder Drehzahl und Leistung

## 3. Motorausführung:

- Befestigung, z.B. Fußmotor, Flanschmotor ...
- Lagerarten, z.B. Wälzlager ...
- Achsenausführung, z.B. ein oder zwei Achsenenden, mit Gewinde ...
- Norm- und Listenmotore
- Sondermotore, z.B. Bremsmotore, Getriebemotore
- Schutzart, Sonderschutz (Luftfeuchtigkeit, Tropenfestigkeit ... Explosionsschutz)
- Kühlung, z.B. Selbstkühlung (natürlich ohne Einwirkungen), Eigenkühlung ...
- Stromart, Spannung, Frequenz, Schaltung
- Schutztechnische Angaben, z.B. Überlastschutz, Temperaturüberwachung ...)

# 4. Kostenvergleich

#### Aufgabe 2.3.1

Bei unsymmetrischer Last am Drehstromnetz werden gemessen:

 $U_{L1} = 230 \text{ V}$ ,  $I_{L1} = 5 \text{ A}$  und  $P_{W1} = 920 \text{ W}$  bei einer induktiven Last,

 $U_{L2} = 230 \text{ V}$ ,  $I_{L2} = 7 \text{ A}$  und  $P_{W2} = 1450 \text{ W}$  bei einer induktiven Last und

 $U_{L3} = 230 \text{ V}$ ,  $I_{L3} = 4 \text{ A}$  und  $P_{W3} = 855 \text{ W}$  bei einer kapazitiven Last.

Frage 1: Wie groß sind die drei  $\cos \varphi$  und der Ausgleichsstrom im Nullleiter?

Frage 2: Wie lauten die symmetrischen Komponenten der Ströme?

#### Aufgabe 2.3.2

Parameter der Ersatzschaltung einer Asynchronmaschine (Kurzschlussläufer)

Leerlaufversuch (mit Antrieb bis zur synchronen Drehzahl):

Sternschaltung  $U = U_N = 220V$ , I = 0.05 A und  $\cos \varphi = 0.2$ 

Kurzschlussversuch (mit festgebremstem Läufer):

 $U = 140 \text{ V}, I = I_N = 0.93 \text{ A} \text{ und } \cos \varphi = 0.14 \text{ gemessen}.$ 

#### Nennbetrieb:

 $\cos \varphi_N = 0.78$ , mechanische Leistung P = 0.33 kW Widerstand einer Wicklung: R<sub>1</sub> = 12.4  $\Omega$ 

Frage 1: Wie lauten  $R_1+R_2$ ',  $X_{\sigma 1}+X_{\sigma 2}$ ',  $X_h$  und  $R_{Fe}$ ?

Frage 2: Wie groß sind s und η bei Nennbetrieb?

Hinweis: Benutzen Sie bei Leerlauf die Näherung  $R_1=\ X_{\sigma 1}=0$ , vernachlässigen Sie bei

Kurzschluss und Belastung  $I_{Fe}$  und  $I_{u}$  und beachten Sie, dass P für drei Phasen gilt.

Zusatzaufgabe: Vergleichen Sie das Vorgehen mit dem Transformator.

#### Aufgabe 2.3.3

Messung der Ständerinduktivität einer Synchronmaschine am Versuchsstand

#### Versuchsaufbau:

Der Synchrongenerator, eine Antriebsmaschine (Gleichstromnebenschlussmotor) und die Drehzahlmessung werden mechanisch und elektrisch nach Vorlage angeschlossen.

#### Versuchsdurchführung:

Drehzahl, Spannung, Strom und Erregerstrom werden gemessen. Bei Generatorbetrieb werden Drehzahl und Erregung konstant gehalten, Spannung und Strom werden für Leerlauf und zwei Ohm'sche Belastungen gemessen.

#### Versuchsauswertung:

Für konstante Induktionsspannung ( $I_E$  und n konstant) werden mit Zeigerdiagrammen jeweils  $U_{LS}$  und  $\beta$  ermittelt. Aus  $U_{LS}$ ,  $\omega$  und I wird die Ständerinduktivität berechnet. Die Ergebnisse beider Lastfälle sind zu vergleichen.