Technische Universität Hamburg-Harburg Institut für Technik, Arbeitsprozesse und Berufliche Bildung

Skript zur Lehrveranstaltung "Analyse elektrotechnischer Prozesse III"

**Erich Boeck** 

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

Erstelldatum 24.01.2012 14:28

# 0 Inhaltsverzeichnis

| 0 Inha  | ltsverzeichnis                                                   |    |
|---------|------------------------------------------------------------------|----|
| 1 Einle | eitung zu zeitveränderlichen Signalen                            |    |
| 2 Perio | odische Signale                                                  | 6  |
| 2.1     | Schaltungen und Geräte mit sinusförmigen Signalen                | 6  |
| 2.1.1   | Behandlung mit Hilfe der komplexen Rechnung                      | 6  |
| 2.1.2   | Behandlung mit graphischen Methoden                              | 9  |
| 2.1.3   | Analyse des Frequenzverhaltens wichtiger Schaltungen             |    |
| 2.1.4   | Parameter für elektrische Stromkreise                            | 16 |
| 2.1.5   | Kennwerte und Übungsaufgaben                                     |    |
| 2.1.6   | Messung des Frequenzgangs eines Schwingkreises                   |    |
| 2.2     | Nichtsinusförmige periodische Signale                            |    |
| 2.2.1   | Mehrere sinusförmige Quellen                                     |    |
| 2.2.2   | Behandlung mit Hilfe der Fourierreihe                            |    |
| 2.2.3   | Wichtige Testsignale zur Analyse von Schaltungen                 |    |
| 2.2.4   | Analyse modulierter Signale                                      |    |
| 2.2.5   | Kennwerte und Aufgaben                                           |    |
| 3 Nich  | tperiodische Signale                                             |    |
| 3.1     | Nichtperiodische Signale endlicher Länge                         |    |
| 3.1.1   | Behandlung mit der Fouriertransformation                         |    |
| 3.1.2   | Diskrete Signale und diskrete Fouriertransformation              |    |
| 3.1.3   | Beispiel: Analyse von DSL- Signalen                              |    |
| 3.1.4   | Kennwerte und Aufgaben                                           |    |
| 3.2     | Schalt- und Übergangsvorgänge                                    |    |
| 3.2.1   | Behandlung mit Hilfe der Laplacetransformation                   |    |
| 3.2.2   | Beispiel: Analyse des Ein- und Ausschaltens eines Schwingkreises |    |
| 3.2.3   | Übertragungsfunktionen von Systemen                              |    |
| 3.2.4   | Kennwerte und Aufgaben                                           |    |
| 3.2.5   | Messung des Ein- und Ausschaltens eines Schwingkreises           |    |
| 4 Aust  | olick, weitere Transformationen zur Signalanalyse                |    |
| 5 Proje | ektaufgabe                                                       |    |
| 6 Liter | aturverzeichnis                                                  |    |

## 1 Einleitung zu zeitveränderlichen Signalen

Die Analyse von Signalen und Systemen sowie die Entwicklung ihrer Methoden unterstreichen außerordentlich deutlich die Aussagen über die drei **Besonderheiten** der Elektrotechnik.

Unabhängig von den immer schnelleren Veränderungen der Technologien sind **Vorgänge** und Prozesse der Elektrotechnik grundsätzlich durch

- o Intransparenz, die nur punktuell durch Messmittel aufgehoben werden kann,
- o heute sogar noch stark zunehmende Komplexität und
- o eine deutliche Eigendynamik

gekennzeichnet.

Diese Besonderheiten wurden zu Beginn der AEP I (im 1. Semester) für die Elektrotechnik aber auch die Informatik, die Prozesssteuerung sowie weitere Bereiche (vergleiche [1]) angeführt.

Der Umgang mit diesen Besonderheiten verlangt für die Analyse von Signalen und Systemen auf der einen Seite ein zunehmend abstrakteres Vorgehen und auf der anderen eine Vielzahl von Methoden. Nur durch dieses "**elektrotechnische Denken**", das auch nicht durch gute Computerprogramme ersetzt (sondern nur unterstützt) werden kann, wird diese Technik gemeistert und der ihr immanente umfangreiche Gestaltungsspielraum genutzt.

**Der Ausgangspunkt** zur Behandlung elektrischer Schaltungen mit zeitveränderlichen Signalen sind die Methoden zur Analyse elektrischer Stromkreise und Netzwerke (AEP I).

Durch die Strom-Spannungs-Beziehungen an der Kapazität und der Induktivität führt die Behandlung elektrischer Schaltungen (Systeme) bei zeitveränderlichen Strömen und Spannungen (Signalen) zu Differentialgleichungen. Zur Lösung der Differentialgleichungen sind je nach Zeitfunktion verschiedene Methoden erarbeitet worden. Durchgesetzt haben sich insbesondere solche Methoden, die es gestatten, die Behandlung auf die Art und Weise von Gleichstrom und Spannung zurückzuführen.



Ohm'sches Gesetz, Strom- und Spannungsteilerregel

#### Abb. 1.1: Schema zur Lösung mittels Transformation

Das Schema zeigt, welche Wege möglich sind; dabei ist auf der blauen Ebene (Bildbereich oder transformierter Bereich) eine Behandlung nach der Art und Weise wie bei Gleichstrom und -spannung durchführbar.

Entsprechend der notwendigen Methoden (Transformationen) ist eine Einteilung der Signale nach ihrem Zeitverlauf erforderlich:

- 1. Sonderfall: periodische Signale
  - a Spezialfall: sinusförmige Signale
  - b andere Fälle: nichtsinusförmige periodische Signale
- 2. Sonderfall: nichtperiodische Signale
  - a Spezialfall: endliche Zeitvorgänge (einmalige Signale, Anfang und Ende sind im Endlichen)
  - b Spezialfall: Zeitvorgänge, die bei  $t_0$  (insbesondere  $t_0 = 0$ ) beginnen (Schaltvorgänge, Übergangsvorgänge)

Es gibt leider keine Methode für beliebige Zeitsignale. In der Praxis haben (fast) alle Signale Anfang und Ende im Endlichen (zumindest alle Nutzsignale). Die Fälle sind also in gewissem Maße Idealisierungen, die praktisch erfolgreich angewandt werden können.

Die Grundlagen der Analyse von Signalen und Systemen werden in dieser Lehrveranstaltung entsprechend der Logik des Verständnisses des Gegenstandes vorgestellt. Dabei wird versucht, viele Bezüge zur praktischen Nutzung aufzuzeigen, und diese werden mit Übungsaufgaben sowie einer Projektaufgaben vertieft. Im Vordergrund stehen diesbezüglich die

- Analyse von Signalen für Schaltungen und Geräte der Audio- und Videotechnik sowie die
- Analyse von Prozessen, der Signalübertragung und -verarbeitung.

Mit elektrotechnischen Prozessen bezeichnen wir Vorgänge und Abläufe in Systemen (Elemente, Geräte und Anlagen) einschließlich ihrer Intransparenz, Komplexität und Eigendynamik. Die Lehrveranstaltung ist für Studenten vorgesehen, die solche Prozesse insbesondere analysieren, verstehen und bewerten können müssen.

## 2 Periodische Signale

### 2.1 Schaltungen und Geräte mit sinusförmigen Signalen

### 2.1.1 Behandlung mit Hilfe der komplexen Rechnung

**Der Ausgangspunkt** zur Behandlung sinusförmiger Signale sind die Eigenschaften der Sinus- und Kosinusfunktion, ihrer Differentiation und Integration.



#### Abb. 2.1: Beispiel für Sinus, Kosinus und ihre Summe

Da jede Summe aus Sinus- und Kosinusfunktionen gleicher Frequenz allgemein durch eine gegenüber dem Nullpunkt verschobenen Kosinusfunktion (genauso Sinusfunktion) dargestellt werden kann, wird in der Elektrotechnik die Kosinusfunktion<sup>1</sup> vereinbart.

$$\mathbf{u}(\mathbf{t}) = \hat{\mathbf{U}}\cos(\omega \mathbf{t} - \varphi) \quad \left\{ = \hat{\mathbf{U}}\sin(\omega \mathbf{t} - \varphi + \pi/2) \right\} \quad \text{mit} \quad \varphi = \omega \mathbf{t}_{\varphi}, \ \omega = 2\pi/\mathbf{T}$$

$$(2.1)$$

Die Differentiation ergibt:

$$\frac{d}{dt}(\sin \omega t) = \omega \cos \omega t \qquad \text{oder} \qquad \frac{d}{dt}(\cos \omega t) = \omega (-\sin \omega t)$$

Würde die Funktion gleich bleiben, ergäbe sich eine sehr einfache Methode. Das ist der Fall, wenn die tatsächlich vorhandene Kosinusfunktion durch eine imaginäre Sinusfunktion erweitert wird.

$$\cos \omega t + \underline{j \sin \omega t} = e^{j\omega t} \quad \text{mit} \quad j = \sqrt{-1}$$
$$\frac{d}{dt}(e^{j\omega t}) = j\omega e^{j\omega t} \quad \text{d.h.} \quad \frac{d}{dt} \to j\omega \quad \text{genauso}$$
$$\int e^{j\omega t} dt = \frac{1}{j\omega} e^{j\omega t} \quad \text{d.h.} \quad \int dt \to \frac{1}{j\omega}$$

(2.2)

Anstatt einer Differentiation bzw. Integration würde somit lediglich der Faktor j $\omega$  bzw. 1/j $\omega$  erscheinen, d.h., es entstehen lineare algebraische Gleichungen wie bei Gleichstrom. Welche Voraussetzungen müssen gegeben sein, damit diese Methode entsprechend dem Schema in Abb. 1.1 genutzt werden kann?

• Es müssen lineare Bauelemente vorhanden sein<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup> Ein weiterer entscheidender Grund liegt bei der in (2.2) notwendigen imaginären Sinusfunktion.

<sup>&</sup>lt;sup>2</sup> Nichtlineare Elemente ergeben ohnehin nichtlineare Differentialgleichungen, die im Allgemeinen nur numerisch lösbar sind.

- Die Frequenz wird von linearen Bauelementen und bei linearen mathematischen Operationen nicht verändert, ist somit const.
- Der hinzugefügte Imaginärteil bleibt "separat" und kann nach der Lösung wieder abgetrennt werden.

Ferner ergibt die Transformation<sup>3</sup> der Strom-Spannungs-Beziehungen (vergleiche [2])

$$u = R_{1} \longrightarrow \underline{u} = R_{\underline{1}}$$
$$u = \frac{1}{C} \int i \, dt \longrightarrow \underline{u} = \frac{1}{j\omega C} \underline{i} = j \frac{-1}{\omega C} \underline{i}^{-4}$$
$$u = L \frac{d i}{dt} \longrightarrow \underline{u} = j\omega L \underline{i}$$

(2.3)

die Möglichkeit, Widerstandswerte analog dem Ohm'schen Gesetz zu definieren.

### **Definition:** komplexer Widerstand $\underline{Z}$ und Leitwert $\underline{Y}$

| R | = R       | $X_{C} = \frac{-1}{\omega C}$ | $X_L = \omega L$                                              |   |
|---|-----------|-------------------------------|---------------------------------------------------------------|---|
| G | = G       | $B_{c} = \omega C$            | $B_L = \frac{-1}{\omega L}$                                   | 5 |
| Z | = R + j X | bzw.                          | $\underline{\mathbf{Y}} = \mathbf{G} + \mathbf{j} \mathbf{B}$ |   |

(2.4)

Damit sind folgende konkrete Lösungsstrategien für sinusförmige Vorgänge möglich:





#### Abb. 2.2: Schema zur Lösung mittels komplexer Rechnung

Ein Beispiel zeigt die praktische Vorgehensweise und deren Vorteile bei der Rechnung.



Abb. 2.3: Reihenschaltung von R, C und L mit einer Sinusspannung

**1. Schritt:** Umwandlung der Schaltung mit ( 2.4) und für die Spannungsquelle durch Hinzufügen eines imaginären Sinusanteils gleicher Amplitude, Frequenz und Phase

<sup>&</sup>lt;sup>3</sup> Komplexe Größen sollen durch einen Unterstrich gekennzeichnet werden (z.B.:  $\underline{u}$  oder  $\underline{i}$ ).

<sup>&</sup>lt;sup>4</sup> Nach Erweitern mit j entsteht im Nenner  $j^2 = -1$ .

<sup>&</sup>lt;sup>5</sup> Bei der Bildung der Beträge fallen die negativen Vorzeichen natürlich weg.



#### Abb. 2.4: Schaltung im Komplexen für die Reihenschaltung von R, C und L

Wie bei Gleichstromschaltungen wird der Strom nach dem Zusammenfassen der drei Widerstände entsprechend einer Reihenschaltung mit dem Ohm'schen Gesetz berechnet.

$$\underline{i} = \frac{\widehat{U} e^{j\omega t}}{R + 1/j\omega C + j\omega L}$$

Damit liegt die Lösung im Komplexen bereits vor.

**2. Schritt:** Umformen in eine Schreibweise, die eine einfache Trennung in Real- und Imaginärteil ermöglicht.

Dazu werden jeweils Zähler und Nenner so umgeformt, dass Realteil und Imaginärteil vorliegen (kartesische Koordinaten). Reine Faktoren und  $e^{jx}$  - Funktionen werden belassen, weil sie den nächsten Schritt begünstigen.

$$\underline{i} = \frac{\widehat{U} e^{j\omega t}}{R + j(\omega L - 1/\omega C)} ^{6}$$

3. Schritt: Umformen der kartesischen Koordinaten in Polarkoordinaten

$$i \qquad X \qquad Z \qquad K + jX = Z e^{j\varphi} \quad \text{mit} \quad Z = \sqrt{R^2 + X^2}$$

Abb. 2.5: kartesische und Polarkoordinaten

$$\underline{i} = \frac{\widehat{U} e^{j\omega t}}{\sqrt{R^2 + (\omega L - 1/\omega C)^2} e^{j\varphi}} \quad \text{mit} \quad \tan \varphi = \frac{\omega L - 1/\omega C}{R}$$

**4. Schritt:** Zusammenfassen aller als Produkte und Quotienten vorhandenen e<sup>jx</sup> - Funktionen entsprechend der Regeln der Potenzrechnung.

Nach (2.2) kann dann von  $e^{j\psi} = \cos \psi + j \sin \psi$  der Realteil durch Weglassen des  $j \sin \psi$  bestimmt werden.

$$i(t) = \frac{\hat{U}\cos(\omega t - \varphi)}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \quad \text{mit} \quad \varphi = \arctan\frac{\omega L - 1/\omega C}{R}$$
(2.5)

Damit liegt die Lösung endgültig vor und es kann nun z.B. untersucht werden, wie sich die Schaltung bei verschiedenen stationären Frequenzen verhält (nicht einer sich zeitlich ändernden Frequenz).

#### Der Preis für diese einfache Art der Rechnung ist der Umgang mit komplexen Zahlen.

<sup>&</sup>lt;sup>6</sup> Der Zähler wird hier belassen, da er bereits dem nächsten Schritt entspricht.

Dr. Erich Boeck

An der Lösung (2.5) ist zu sehen, dass sich weitere Vereinfachungen anbieten. So kann diese in zwei Teile zerlegt werden, von denen einer die Amplitude und der andere die Phasenlage bestimmt.

$$\hat{\mathbf{I}} = \frac{\hat{\mathbf{U}}}{\sqrt{\mathbf{R}^2 + (\omega \mathbf{L} - 1/\omega \mathbf{C})^2}} = \frac{\hat{\mathbf{U}}}{|\underline{Z}|} \quad \text{bzw.} \quad \mathbf{I} = \frac{\mathbf{U}}{\mathbf{Z}}$$
$$\varphi_i = \varphi_u - \varphi_z = \varphi_u - \arctan\frac{\mathrm{Im}\{\underline{Z}\}}{\mathrm{Re}\{\underline{Z}\}} = -\arctan\frac{\omega \mathbf{L} - 1/\omega \mathbf{C}}{\mathrm{R}}$$

Dabei sind I sowie U Effektivwerte<sup>7</sup>,  $Z = |\underline{Z}|$  und im obigen Beispiel  $\varphi_u = 0$ . Das lässt sich zu einer Amplituden- bzw. Betragsrechnung und einer Phasenrechnung verallgemeinern. Um das auch bei komplizierteren Schaltungen zu realisieren, bieten sich die folgenden graphischen Hilfsmittel oder Methoden an.

(2.6)

### 2.1.2 Behandlung mit graphischen Methoden

In Fortführung der Darstellung in Abb. 2.5 können alle Ströme, Spannungen, Widerstände und Leitwerte als **Zeiger** in einer komplexen Ebene abgebildet werden.

Diese Zeiger sind als Vektoren in der komplexen Ebene aufzufassen. Dafür gilt:

- 1. In **einer** Ebene können nur **gleiche** Elemente (d.h. Ströme oder Widerstände ...) verarbeitet werden.
- 2. Die imaginäre und die reelle Achse müssen mit dem gleichen Maßstab eingeteilt werden und haben wegen 1. die gleiche Maßeinheit<sup>8</sup>.
- 3. In diesen Ebenen können Zeiger addiert (wie Vektoren) und subtrahiert (Addition des negativen Zeigers) werden.
- 4. Zwischen den Ebenen kann relativ einfach umgerechnet werden (z.B.:  $\underline{Y} = 1 / \underline{Z} \rightarrow Y = 1 / Z$  und  $\phi_Y = -\phi_Z$  oder  $\underline{U} = \underline{Z} \cdot \underline{I} \rightarrow U = Z \cdot I$  und  $\phi_u = \phi_Z + \phi_i$ ).
- 5. Insbesondere bei Strömen und Spannungen werden die Achsen in der Regel nicht explizit gezeichnet, da ein Wert als Bezugsrichtung gewählt wird und die anderen dann danach ausgerichtet werden.
- 6. Zum Vergleich der Richtungen ist es sinnvoll, Ebenen exakt übereinander darzustellen. Dabei sollte eine deutliche Kennzeichnung erfolgen.

Für das Beispiel aus Abb. 2.3 und Abb. 2.4 können die Widerstände der Reihenschaltung in einer Widerstandsebene (Z-Ebene) addiert werden (Zeiger mit Richtung aneinanderhängen).



Abb. 2.6: Addition von Widerständen mit Zeigern

<sup>&</sup>lt;sup>7</sup> Für Sinusform I =  $\hat{I} / \sqrt{2}$  und U =  $\hat{U} / \sqrt{2}$  (siehe AEP I).

<sup>&</sup>lt;sup>8</sup> Bei ungleicher Maßeinteilung werden Winkel verfälscht.

Dr. Erich Boeck

Aus dieser Zeichnung können Z und  $\varphi_Z$  entweder bei exakter maßstäblicher Zeichnung durch Messen der Länge von Z und des Winkels  $\varphi_Z$  ermittelt oder durch die sichtbaren Verhältnisse im Dreieck mit dem Satz des Pythagoras und einer Winkelfunktion berechnet werden.

$$Z^{2} = R^{2} + (\omega L - 1/\omega C)^{2} \text{ und } \tan \varphi_{Z} = \frac{(\omega L - 1/\omega C)}{R}$$

Nun können I und  $\varphi_I$  berechnet werden <sup>9</sup>.

$$I = U/Z = \frac{U}{\sqrt{R^2 + (\omega L - 1/\omega C)^2}} \text{ und } \varphi_i = \varphi_u - \varphi_Z = -\arctan\frac{(\omega L - 1/\omega C)}{R} 10$$

Die Darstellung aller Ströme und Spannungen kann in diesem Beispiel am einfachsten mit dem Strom als Bezugsrichtung erfolgen. Dabei werden die Ebenen des Stromes und die der Spannungen übereinander gelegt. (Es kann natürlich für beide ein jeweils eigener Maßstab gewählt werden.)



#### Abb. 2.7: Darstellung des Stromes und der Spannungen als Zeiger

Es ist zu erkennen, dass  $U_L$  um 90° gegenüber I vorläuft, dagegen  $U_C$  um 90° dem Strom hinterherläuft (im mathematisch positiven Umlaufsinn – gegen den Uhrzeiger).

Bei einer Parallelschaltung von Widerständen addieren sich die Leitwerte, das kann in einer Leitwertebene realisiert werden. Treten gemischte Schaltungen auf, wird wie bei Gleichstrom schrittweise berechnet.



Abb. 2.8: Beispiel: Reihen und Parallelschaltung

Zur Berechnung des komplexen Gesamtwiderstandes von Abb. 2.8 kann in der Z-Ebene begonnen werden. Das ergibt Abb. 2.6. Das Ergebnis wird in eine Y-Ebene invertiert (entsprechend  $\underline{Y} = 1 / \underline{Z} \rightarrow Y = 1 / Z$  und  $\phi_Y = -\phi_Z$ ).



#### Abb. 2.9 Parallelschaltung in der Y-Ebene

 $Y_{ges}$  kann wieder nach den sichtbaren Dreiecksbeziehungen berechnet werden. Dazu bietet sich das Dreieck der Seiten Im $\{\underline{Y}\}$ , (Re $\{\underline{Y}\}+G_2$ ) und  $Y_{ges}$  an.

<sup>&</sup>lt;sup>9</sup> Winkel des Zählers werden addiert und die des Nenners subtrahiert (wegen der Regeln der Potenzrechnung).

<sup>&</sup>lt;sup>10</sup> Der Strom läuft also der Gesamtspannung hinterher – gegen Uhrzeigersinn gesehen.

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

$$Y_{ges} = \sqrt{Im\{\underline{Y}\}^2 + (Re\{\underline{Y}\} + G_2)^2} \quad und \quad tan\varphi_{Yges} = \frac{Im\{\underline{Y}\}}{Re\{\underline{Y}\} + G_2}$$

Dabei sind natürlich  $\text{Re}\{\underline{Y}\}=\text{Re}\{1/\underline{Z}\}=(1/Z)\cos\varphi_Z$ ,  $\text{Im}\{\underline{Y}\}=\text{Im}\{1/\underline{Z}\}=(1/Z)\sin(-\varphi_Z)$  und  $G_2=1/R_2$ . Somit wird

$$Y_{ges} = \sqrt{\left(\frac{1}{Z}\sin(-\varphi_Z)\right)^2 + \left(\frac{1}{Z}\cos\varphi_Z + \frac{1}{R_2}\right)^2} \quad \text{und} \quad \tan\varphi_{ges} = \frac{\frac{1}{Z}\sin(-\varphi_Z)}{\frac{1}{Z}\cos\varphi_Z + \frac{1}{R_2}}.$$

Man kann weiter umformen <sup>11</sup> bis nur noch  $R_1$ ,  $R_2$ ,  $\omega L$  und  $1/\omega C$  in  $Y_{ges}$  enthalten sind.

Soll der Strom bestimmt werden, bietet sich eine Darstellung der Ströme und Spannungen an. Ausgehend von  $i_1$  können alle Spannungen bis zur Gesamtspannung durch Addition konstruiert werden, nach dieser kann dann  $i_2$  und danach  $i_{ges}$  ermittelt werden.



Abb. 2.10: Darstellung der Ströme und der Spannungen als Zeiger

Dafür ergibt sich mit dem Dreieck  $(I_1+I_2\cos\varphi_Z) - I_2\sin\varphi_Z - I_{ges}$  ein Ausdruck entsprechend  $I_{ges} = U_{ges}Y_{ges}$  und ein vergleichbarer für  $\varphi_{ges}$ .

Es ist feststellbar, dass auch für kompliziertere Schaltungen Zeigerbilder leicht konstruierbar sind. Eine Vorgehensweise, bei der Zeiger nur addiert werden (wie in den Beispielen Abb. 2.7 und Abb. 2.10), ist dabei immer vorzuziehen <sup>12</sup>. Die Zerlegung eines Zeigers in Zeiger gleicher Richtung ist gangbar und für Zeiger, die senkrecht aufeinander stehen, mit dem Thaleskreis durchführbar.

Wenn das Zeigerbild nur zur qualitativen Analyse benötigt wird, können relativ komplexe Schaltungen schnell untersucht werden. Für eine quantitative Analyse entstehen durch die vielfältigen Winkelfunktionen recht schnell Ausdrücke, die bezüglich ihrer Parameter nur noch numerisch ausgewertet werden können (numerische Kurvendarstellung oder sogar mit Simulationsverfahren siehe AEP I). Immer bleibt aber bei maßstäblicher Zeichnung die einfache Variante des direkten Messens von Länge und Winkel. (Bei einer durchgängigen komplexen Rechnung besteht das gleiche Problem.)

Eine Erweiterung der Zeigerdarstellung zu Ortskurven führt zu einer graphischen Methode, die insbesondere bei der Auswertung von Parametervariationen hilft.

<sup>&</sup>lt;sup>11</sup> Mit  $\sin\varphi_Z = \tan\varphi_Z / (1 + \tan\varphi_Z)^{1/2}$  und  $\cos\varphi_Z = 1 / (1 + \tan\varphi_Z)^{1/2}$  sowie durch Einsetzen von  $Z = \sqrt{R_1^2 + (\omega L - 1/\omega C)^2}$ .

<sup>&</sup>lt;sup>12</sup> Wird dabei mit einem unbekannten Zeiger begonnen und der bekannte ist die Summe, wird eine Länge angenommen und der Maßstab erst nach dem Ergebnis festgelegt.

Der zu verändernde Parameter kann z.B. ein Widerstand (Potentiometer) sein. Am häufigsten wird die Frequenz (Kreisfrequenz  $\omega$ ) variiert <sup>13</sup>. Das Beispiel aus Abb. 2.4 wird mit einem Potentiometer zu Abb. 2.11.



Abb. 2.11: Schaltung für die Reihenschaltung von variablem R sowie C und L

Die graphische Konstruktion erfolgt wie ein Zeigerbild für jeden gewünschten Parameter. Oft ist der Kurvenverlauf nach wenigen Parameterpunkten zu erkennen. Die Ortskurve ist nun die Kurve, die die Spitzen der Ergebniszeiger verbindet. An den entsprechenden Punkten der Kurve sollte der Parameter verzeichnet sein.



Abb. 2.12: Konstruktion einer Ortskurve und die Ortskurve

Eine Ortskurve kann immer aus der komplexen Ebene herausgeholt und über dem Parameter einmal als Kurve für den Betrag sowie zum anderen als Kurve für die Phase dargestellt werden. Bei einer maßstäblichen Zeichnung erfolgt das wiederum durch Messen von Länge und Winkel. Andernfalls sind die Formeln nach  $|\underline{Z}|$ (Parameter) und  $\varphi_Z$ (Parameter) umzuformen.



Die Ortskurven sind aber auch für qualitative Darstellungen sehr gut geeignet. Als Beispiel werden  $\underline{Z}$  und  $\underline{Y}$  von Abb. 2.4 in Abhängigkeit vom Parameter  $\omega$  dargestellt.

<sup>&</sup>lt;sup>13</sup> Es geht immer um stationäre Prozesse, d.h., nach einer Parameteränderung wird gewartet, bis alle Übergangsvorgänge vorbei sind (siehe auch Abschnitt 3.2).

<sup>&</sup>lt;sup>14</sup> In der Darstellung entspricht  $\omega L - 1/\omega C \approx 0.8$  R.





In Abb. 2.14 ist für  $\omega = \omega_1$  der Betrag  $1/\omega_1 C > \omega_1 L$  und somit hat das Ergebnis von  $\underline{Z}(\omega_1)$ einen negativen Imaginärteil. Bei  $\omega = \omega_0$  wird der Betrag  $1/\omega_0 C = \omega_0 L$  und  $\underline{Z}(\omega_0) = R$  rein reell. Für  $\omega = \omega_2$  wird der Betrag  $1/\omega_2 C < \omega_2 L$  und  $\underline{Z}(\omega_2)$  hat einen positiven Imaginärteil. Die Kurve von  $\underline{Z}(\omega)$  ist eine Gerade von  $R - j\infty$  (für  $\omega = 0$ ) bis  $R + j\infty$  (für  $\omega = \infty$ ). Bei der Invertierung der Ortskurve  $\underline{Z}(\omega)$  zu einer Ortskurve  $\underline{Y}(\omega)$  sind folgende Regeln sehr hilfreich (analog bei Invertierung in umgekehrter Richtung):

- 1. Durch Y = 1/Z wird der längste Zeiger zum kürzesten und umgekehrt.
- 2. Wegen  $\varphi_{\rm Y} = -\varphi_{\rm Z}$  erfolgt eine Spiegelung jedes Zeigers an der reellen Achse.
- 3. Rein reelle Zeiger bleiben reell.
- 4. Ist eine Kurve ein Kreis, muss auch die invertierte Kurve ein Kreis sein. Dabei sind Geraden lediglich Kreise mit einem Radius von ∞. <sup>15</sup>

Mit diesen Regeln ergibt sich die Ortskurve von  $\underline{Y}(\omega)$ .



Abb. 2.15: <u>Y</u> – Ortskurve der Reihenschaltung von R, L und C als  $f(\omega)$ 

 $\underline{\mathbf{Y}}(\omega)$  ist ein Kreis mit dem Durchmesser 1/R als größter Zeiger bei  $\omega_0$  (in Abb. 2.14 war R der kleinste Zeiger). Was in Abb. 2.14 bei negativen Imaginärteilen lag, liegt hier bei positiven.

### 2.1.3 Analyse des Frequenzverhaltens wichtiger Schaltungen

An den vorigen Abschnitt schließt sich gut die Analyse des Reihenschwingkreises – eine Reihenschaltung von R, L und C an einer konstanten Spannungsquelle nach Abb. 2.4 – an.

<sup>&</sup>lt;sup>15</sup> Das folgt aus den Gesetzen der Abbildung von Kurven in einer komplexen Ebene.

In den Kurven Abb. 2.14 und Abb. 2.15 sind drei besondere Parameter (Kurvenpunkte) des Reihenschwingkreises vorhanden (vergleiche auch [2]). Diese Parameter befinden sich bei (siehe Abb. 2.16)<sup>16</sup>

• dem Imaginärteil Null (d.h.  $1/\omega_0 C = \omega_0 L$ ), daraus folgt die Definition der Resonanzfrequenz

$$\omega_0 = \sqrt{1/LC}$$
,

• und dem Betrag des Imaginärteils gleich dem Realteil (d.h.  $|\omega_{\pm 45}L - 1/\omega_{\pm 45}C| = R$ ), daraus folgen die zwei Punkte  $\omega_{\pm 45}$  und  $\omega_{-45}$  (siehe Abb. 2.16).



Abb. 2.16: Besondere Parameter der Ortskurven  $\underline{Z}(\omega)$  und  $\underline{Y}(\omega)$ 

Aus den beiden Kreisfrequenzen  $\omega_{+45}$  und  $\omega_{-45}$  erfolgt die Definition der Bandbreite des (idealen) Reihenschwingkreises

 $\Delta \omega_{\rm B} = \omega_{+45} - \omega_{-45} = R/L = \omega_0^2 RC = \omega_0 R \sqrt{C/L} = \omega_0 / Q .$ 

(2.8)

(2.7)

Die Definition der Bandbreite in (2.8) ist sinnvoll, weil sie mehrere interessante Aspekte erfüllt.

- Betrag des Imaginärteils gleich dem Realteil,
- $Z = \sqrt{2} R$  (bzw.  $Y = \sqrt{1/2} \cdot 1/R$ ) und
- diese  $\sqrt{2}$  (bzw. die Verringerung auf  $\sqrt{1/2}$ ) entspricht im logarithmischen Dämpfungsmaß gerade 3 dB. Eine Dämpfung von 3 dB nimmt aber ein normales menschliches Ohr gerade noch nicht wahr.

Der Faktor Q gibt die Güte, Resonanzschärfe oder auch Resonanzüberhöhung an. Verhältnis der induktiven ( $\omega_0 L$ ) oder kapazitiven ( $1/\omega_0 C$ ) Komponente zum Wirkwiderstand R. Danach wird bei Resonanzfrequenz U<sub>L</sub>=U<sub>C</sub>=QU<sub>R</sub>.

Analog zu Abb. 2.13 können aus Abb. 2.16 ein Frequenzgang und der Phasengang dargestellt werden. Hier sollen I = U/Z (=UY) bezogen auf den Maximalwert bei  $\omega_0$  sowie  $\varphi_I = \varphi_Y = -\varphi_Z$  abgebildet werden (zusätzlich U<sub>L</sub> = I  $\omega$ L, U<sub>C</sub> = I/ $\omega$ C, U<sub>R</sub> = IR und U<sub>ges</sub> = U bezogen auf U<sub>ges</sub>).

<sup>&</sup>lt;sup>16</sup> Für  $\underline{Z}(\omega)$  und  $\underline{Y}(\omega)$  folgen aus diesen Definitionen die gleichen Kreisfrequenzen.

Dr. Erich Boeck





Frequenzgang und Phasengang können selbstverständlich auch messtechnisch ermittelt und aus diesen beiden danach die Ortskurve gezeichnet werden.

In Abb. 2.17 hat  $Q = \omega_0/\Delta\omega_B$  einen recht kleinen Wert (ca 1,2). Für einen hohen Wert von Q wäre die Kurve I/I<sub>Max</sub> sehr viel spitzer ( $\Delta\omega_B$  sehr schmal), d.h. hohe Resonanzschärfe und starke Überhöhung von U<sub>CMax</sub> und U<sub>LMax</sub> gegenüber U<sub>ges</sub>. Die Spannungen U<sub>CMax</sub> und U<sub>LMax</sub> sind also größer als die Spannung der Quelle und diese Maxima liegen vor oder hinter  $\omega_0$ . ( $\underline{U}_C$  und  $\underline{U}_L$  heben sich zum Teil oder ganz auf.) Die gesamte Spannung fällt bei  $\omega = 0$  an C, bei  $\omega = \omega_0$  an R ( $\underline{U}_C = -\underline{U}_L$ ) und bei  $\omega \to \infty$  an L ab. Alle drei Spannungen ergeben in der Summe immer U.

Weitere wichtige Standardschaltungen (Parallelschwingkreis, Tiefpass und Hochpass) sind in den Übungsaufgaben zu analysieren (siehe Abschnitt 2.1.5).

Hier soll noch ein Reihenschwingkreis mit realen Verlusten analysiert werden.



### Abb. 2.18: Beispiel: Reihenschwingkreis mit verlustbehafteten Elementen

Zu Beginn wird in einer Y-Ebene die Ortskurve der Parallelschaltung bestimmt.



Abb. 2.19: Addition der Leitwerte  $1/R_C$  und  $\omega C$ 

Die halbe Gerade von  $0 \le B \le \infty$  ergibt bei der Invertierung in die Z-Ebene einen Halbkreis. Der kürzeste Zeiger  $1/R_C$  wird zum längsten  $R_C$  (Durchmesser des Halbkreises). Wegen  $\phi_Z = -\phi_Y$  liegt der Halbkreis nach unten.



Abb. 2.20: Addition der Widerstände  $R_L$ ,  $R_C \parallel 1/j\omega C$  und  $\omega L$ 

Bei diesem Beispiel wird deutlich, dass  $\omega_0$  zu  $\omega_{reell}$  und  $\omega_{Minimum}$  auseinanderfällt. Normalerweise ist  $R_L$  recht klein und  $R_C$  sehr groß, so dass der Halbkreis einen sehr großen Durchmesser hat (der Punkt für  $\omega = 0$  befindet sich dann weit rechts außerhalb der Darstellung). Dadurch liegen  $\omega_{Reell}$  und  $\omega_{Minimum}$  sehr dicht nebeneinander und die Kurve ist in ihrer Nähe etwa eine Gerade. Infolgedessen sehen auch die Frequenzgänge und der Phasengang (außer in der Nähe von  $\omega = 0$ ) wie in Abb. 2.17 aus.

Dieser reale Schwingkreis würde beim Einsatz in einer Oszillatorschaltung (ohne weitere äußere Einflüsse) bei  $\omega_{Minimum}$  schwingen (größter Betrag des Stromes mit I = U/Z<sub>Min</sub>).

### 2.1.4 Parameter für elektrische Stromkreise

Außer dem Verhalten bei verschiedenen Frequenzen sind vor allem die Leistung bei sinusförmigen Strömen und Spannungen unterschiedlicher Phase zu untersuchen.

Die Leistung kann zu jedem Zeitpunkt  $p(t) = u(t) \cdot i(t)$  berechnet werden (vergleiche AEP I Abschnitt 3.4).



Abb. 2.21: Spannung und Leistung ohne und mit Phasenverschiebung

Mit u(t) = Û cos  $\omega$ t und i(t) = Î cos  $\omega$ t wird p(t) = Û Î ½ (1 + cos 2 $\omega$ t); mit i(t) = Îcos( $\omega$ t- $\phi_i$ ) ergibt sich p(t) = Û Î ½ [cos{ $\phi_u$ -(- $\phi_i$ )} + cos{ $2\omega$ t+ $\phi_u$ +(- $\phi_i$ )}]<sup>17</sup>. Bei  $\phi = \phi_u$ - $\phi_i = \pm 90^\circ$  hat die Leistung den Mittelwert Null. Dabei entsprechen eine positive Leistung einer Leistungsaufnahme und eine negative Leistung einer Leistungsabgabe. Es wird also bei cos $\phi \neq 1$  ein Teil der Energie während jeder Periode hin- und hergespeichert.

Eine kompaktere und somit aussagekräftigere Information über den Leistungsverbrauch ergibt der Mittelwert.

$$\overline{\mathbf{P}} = \frac{1}{T} \int_{0}^{T} \mathbf{u}(t) \cdot \mathbf{i}(t) dt = \frac{\hat{\mathbf{U}} \, \hat{\mathbf{I}}}{2} \cos \varphi = \mathbf{U} \, \mathbf{I} \cos \varphi^{-18} \quad \text{mit} \quad \varphi = \varphi_{u} - \varphi_{i}$$

Dr. Erich Boeck

<sup>&</sup>lt;sup>17</sup> cosx  $\cdot \cos y = \frac{1}{2} [\cos(x-y) + \cos(x+y)]$ , in Abb. 2.21 ist  $\varphi_u = 0$  und  $\varphi = \varphi_u - \varphi_i$  definiert das Vorzeichen von P<sub>B</sub>.

 $<sup>^{18}</sup>$  U = Û/ $\sqrt{2}~$  und I = Î /  $\sqrt{2}~$  sind Effektivwerte für die Sinusform (siehe AEP I).

Das entspricht dem Produkt der Spannung mit der Projektion des Stromes auf deren Richtung.



#### Abb. 2.22: Aufteilung des Stromes parallel und senkrecht zu U

Das Zeigerbild in Abb. 2.22 zeigt, dass bei der Zerlegung des Stromes in zwei Komponenten der Anteil parallel zur Spannung die Wirkleistung  $P_W$  ergibt und der Anteil senkrecht zur Spannung genau den Teil der Leistung, der während jeder Periode hin- und hergespeichert wird. Dieser Anteil der Leistung wird als Blindleistung  $P_B$  bezeichnet. Die Summe der Leistungszeiger wird Scheinleistung genannt Abb. 2.23. Der Faktor cos $\varphi$  gibt den Anteil der Wirkleistung an und wird deshalb Leistungsfaktor cos $\varphi$  genannt.

Definition: Wirkleistung, Blindleistung, Scheinleistung und Leistungsfaktor

$$P_{W} = \overline{P} = U I \cos \varphi \qquad P_{B} = U I \sin \varphi \qquad P_{S} = \sqrt{P_{W}^{2} + P_{B}^{2}} = U I \qquad \cos \varphi$$
(2.9)

Eine Zeigerdarstellung für die drei Leistungskenngrößen zeigt Abb. 2.23.



Läuft der Strom der Spannung voraus, sind kapazitive Anteile vorhanden und es wird  $1 > \cos \varphi \ge 0$ . Läuft dagegen die Spannung voraus, sind induktive Anteile vorhanden und es wird  $1 > \cos \varphi \ge 0^{-19}$ . An  $\cos \varphi$  ist also die Richtung nicht allein erkennbar.



#### Abb. 2.24: Bedeutung von $\phi$ (vom Strom zur Spannung $\phi_u - \phi_i$ ) und von $\cos \phi$

Alle drei Leistungskenngrößen und  $\cos\varphi$  sind integrale Kennwerte und nur für Sinusform definiert (2.9), das muss bei entsprechenden Messgeräten beachtet werden. Eine **einfache** Erweiterung auf nichtsinusförmige Größen ist nur für P<sub>w</sub> mit  $\overline{P}$  gegeben (siehe auch [2])<sup>20</sup>.

Eine Anwendung auf Dreiphasensysteme ist ohne weiteres möglich und wird in AEP IV behandelt werden.

<sup>&</sup>lt;sup>19</sup> Da  $\cos\varphi = \cos(-\varphi)$ 

<sup>&</sup>lt;sup>20</sup> Erweiterung auf nichtsinusförmige periodische Größen siehe [3].

Dr. Erich Boeck

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

### 2.1.5 Kennwerte und Übungsaufgaben

Kennwerte sinusförmiger Ströme und Spannungen:

| • | Spitzenwert        | Û, Î                          | in V, A               |
|---|--------------------|-------------------------------|-----------------------|
| • | Effektivwert       | U, I                          | in V, A               |
| • | Frequenz           | f                             | in Hz                 |
| • | Kreisfrequenz      | ω                             | in 1/s                |
| • | Phasenwinkel (el.) | $\varphi = \omega t_{\sigma}$ | in Bogenmaß oder Grad |

Kennwerte einiger Grundschaltungen bei sinusförmigen Strömen und Spannungen:

- Tiefpass  $\omega_{go} = 2\pi f_g = 2\pi/\tau = 2\pi/RC$ •
- $\omega_{gu}=2\pi~f_g=2\pi/\tau=2\pi~L/R$ Hochpass
- $\omega_0 = 2\pi f_0 = (LC)^{-1/2}$   $\omega_{\pm 45} = 2\pi f_{\pm 45}$   $\Delta \omega_B = 2\pi \Delta f_B = \omega_0 / Q_R$ Reihenschwingkreis •  $Q_R = 1/R \sqrt{C/L}$  der Reihenschaltung  $\omega_0 = 2\pi f_0 = (LC)^{-1/2}$  $\omega_{+45} = 2\pi f_{+45}$   $\Delta \omega_{\rm B} = 2\pi \Delta f_{\rm B} = \omega_0 / Q_{\rm P}$ • Parallelschwingkreis

 $Q_P = R \sqrt{C/L}$ der Parallelschaltung Kennwerte für Leistung bei sinusförmigen Strömen und Spannungen:

- Wirkleistung in W
- $P_{W}$
- Blindleistung PB in var (volt-ampere-reaktiv)
- Scheinleistung in VA Ps
- Leistungsfaktor cosφ

#### Aufgabe 2.1.1

Ein Tiefpass soll für R = 2 k $\Omega$ , C = 1  $\mu$ F, f = 100 Hz und U = 5 V analysiert werden.



#### Abb. 2.25: Tiefpass ohne Last

Frage 1: Wie arbeitet diese Schaltung physikalisch?

Frage 2: Wie sieht das maßstäbliche Zeigerbild aller Ströme und Spannungen aus?

- Frage 3: Wie wären Betrag und Phase von u<sub>C</sub> aus den Dreiecksbeziehungen zu bestimmen?
- Frage 4: Wie groß ist die obere Grenzfrequenz  $f_{go}$ ?
- Frage 5: Wie sieht die Ortskurve  $U_{C}(\omega)$  für  $0 \le f \le 10$  kHz aus, wie der Frequenz- und Phasengang von  $u_{\rm C}$ ?
- Hinweis: Tabelle für f,  $\omega$ , U<sub>C</sub> und  $\varphi_C$  mit ca. 5 Punkten anlegen (2 vor, 2 nach  $f_{go}$ ).

Zusatzfrage: Wie sieht die Schaltung eines Tiefpasses mit R und L aus?

### Aufgabe 2.1.2

Ein Hochpass soll für R =  $2 k\Omega$ , C =  $1 \mu$ F, f = 100 Hz und U = 5 V analysiert werden.



#### Abb. 2.26: Hochpass ohne Last

Frage 1: Wie arbeitet diese Schaltung physikalisch?

- Frage 2: Wie sieht ein qualitatives Zeigerbild aller Ströme und Spannungen aus?
- Frage 3: Wie sind Betrag und Phase von u<sub>R</sub> aus den Dreiecksbeziehungen zu bestimmen?
- Frage 4: Wie groß ist die untere Grenzfrequenz  $f_{gu}$ ?
- Frage 5: Wie sieht die Ortskurve  $\underline{U}_{R}(\omega)$  für  $0 \le f \le 10$  kHz aus, wie der Frequenz- und Phasengang von  $u_{R}$ ?
- Hinweis: Tabelle für f,  $\omega$ , U<sub>R</sub> und  $\phi_R$  mit ca. 5 Punkten anlegen (2 vor, 2 nach f<sub>gu</sub>).

Zusatzfrage: Wie sieht die Schaltung eines Hochpasses mit R und L aus?

#### Aufgabe 2.1.3

Ein Parallelschwingkreis soll für f = 100 Hz und I = 2,5 mA = const analysiert werden. (R = 2 k $\Omega$ , C = 1  $\mu$ F und L = 40 mH)



Abb. 2.27: Parallelschwingkreis ohne Last

- Frage 1: Wie sieht das qualitative Zeigerbild aller Ströme und Spannungen aus?
- Frage 2: Wie wären Betrag und Phase von u aus den Dreiecksbeziehungen zu bestimmen?
- Frage 3: Wie groß sind die Resonanzfrequenz  $f_0$  und die Bandbreite  $\Delta f_B$ ?
- Frage 4: Wie sieht die Ortskurve  $\underline{U}(\omega)$  für  $0 \le f \le 10$  kHz aus, wie der Frequenz- und Phasengang von u?

Hinweis: Tabelle für f,  $\omega$ , U und  $\phi_U$  mit ca. 7 Punkten anlegen (2 vor, 2 nach f<sub>0</sub> und f<sub>±45</sub>).

### Aufgabe 2.1.4

Ein Tiefpass wird mit einem Operationsverstärker aufgebaut.





Frage 1: Wie kann C bei  $R_1 = 10 \text{ k}\Omega$  und  $R_F = 100 \text{ k}\Omega$  für  $f_{go} = 1 \text{ kHz}$  bestimmt werden? Frage 2: Wie sehen der Frequenzgang und der Phasengang für  $0 \le f \le 10 \text{ kHz}$  aus? Hinweis: Tabelle für f,  $\omega$ , U<sub>A</sub> und  $\varphi_A$  mit ca. 5 Punkten anlegen (2 vor, 2 nach  $f_{go}$ ). Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

### Aufgabe 2.1.5

Auf dem Typenschild eines Asynchronmotors sind u.a. folgende Angaben:

| Nennspannung | : | 220/380  | V |
|--------------|---|----------|---|
| N.T          |   | 1 (10 00 |   |

Nennstrom : 1,6/0,93 A cos $\phi$  : 0,78

 $cos\phi$  : 0,78 Leistung : 0,33 W

- Frage 1: Wie groß sind die Wirkleistung (elektrisch), Blindleistung, Scheinleistung und der Wirkungsgrad?
- Frage 2: Als einfaches Ersatzschaltbild ist die Parallelschaltung von R und L möglich. Wie groß sind diese bei Nennbetrieb?
- Frage 3: Welche Größe C muss ein paralleler Kompensationskondensator haben, damit keine Blindleistung aus dem Netz entnommen wird?

Hinweis: Die Leistung ist die nutzbare mechanische Leistung, die Rechnung müsste bei 220 bzw. 380 V im Rahmen der Messgenauigkeit gleiche Ergebnisse liefern. Die Frequenz beträgt f = 50 Hz.

### 2.1.6 Messung des Frequenzgangs eines Schwingkreises

Messen der Spannungen an Widerstand, Induktivität und Kapazität bei verschiedenen Frequenzen.

#### Versuchsaufbau:



Abb. 2.29: Schaltung des Versuchsaufbaus

Hinweis: Zur Messung R, L und C tauschen. Resonanz- und 45°-Frequenzen suchen und zusätzlich zwei weitere Messpunkte auf jeder Seite anordnen. (Achtung: Phase liegt nur einzeln gegenüber der Gesamtspannung vor.)

#### Versuchsdurchführung:

Messung der Spannungen mit einem Oszillografen, Nutzung einer Sinusspannung, Übergabe der Kurven an einen PC und Auswertung, Vergleich mit berechneten Verläufen und Parametern.

Folgende Untersuchungen geben einen Überblick über das Verhalten:

```
Dr. Erich Boeck
```

- 1. Messen Sie bei U = 5 V, L = 300 mH, C =  $0.22 \ \mu$ F und R = 300  $\Omega$  sowie 30  $\Omega$ . Stellen Sie den Frequenz- und Phasengang doppeltlogarithmisch dar.
- 2. Stellen Sie die Ortskurve in einer Z-Ebene dar.
- 3. Bestimmen Sie R, L und C aus den Messwerten.

#### Zusammenfassung der Versuchergebnisse:

- 1. Die dargestellten Kurven stimmen mit dem theoretischen Verlauf sehr gut überein.
- 2. Die aus den Kurven ermittelten Parameter entsprechen recht gut den Werten der eingesetzten Bauelemente. Nur die Induktivität der Spule weicht deutlich vom Typenschild ab. Die eingesetzte Spule (Vorschaltgerät für eine Hochdrucklampe) ist für 50 Hz vorgesehen (Material des Kerns)  $\omega_0/2\pi$  ist aber ca. 800 Hz.

## 2.2 Nichtsinusförmige periodische Signale

### 2.2.1 Mehrere sinusförmige Quellen

Schon die Addition von zwei sinusförmigen Signalen unterschiedlicher Frequenz ergibt ein nichtsinusförmiges aber periodisches Signal (genauso von mehreren Signalen).



Abb. 2.30: Schaltung mit zwei Quellen unterschiedlicher Frequenz

Da mit der komplexen Rechnung (und den von ihr abgeleiteten Methoden) nur Schaltungen mit linearen Bauelementen behandelt werden können, ist dann auch grundsätzlich die Anwendung des Überlagerungssatzes gegeben. Die Schaltung in Abb. 2.30 wird dazu in eine Ersatzschaltung für jede Quelle aufgeteilt.



### Abb. 2.31: Zwei Schaltungen für den Überlagerungssatz

Beide Schaltungen werden mit Methoden aus Abschnitt 2.1 berechnet. Das Gesamtergebnis ist die richtungsrichtige Addition (z.B. der Strom für Abb. 2.30 wird  $i(t) = i_1(t) + i_2(t)$ ).



### Abb. 2.32: Beispiel für ein mögliches Ergebnis im Zeitbereich <sup>21</sup>

Bei fast gleichen Frequenzen ergäbe sich für das Beispiel aus Abb. 2.30 ein typischer Schwebungsvorgang, der von einer Multiplikation zweier Frequenzen durch deren Phasensprünge unterschieden werden kann.

Mehrere Frequenzen ergeben immer nichtsinusförmige periodische Signale.

<sup>&</sup>lt;sup>21</sup> Kleinere Frequenz weit im Kapazitiven (i  $\rightarrow$  90° vor), größere Frequenz weit im Induktiven (i  $\rightarrow$  90° nach)

### 2.2.2 Behandlung mit Hilfe der Fourierreihe

Alle periodischen Signale können durch Zerlegung in eine Fourierreihe zu einer Summe von Sinussignalen umgeformt und jeder Summand einzeln (wie in 2.2.1) behandelt werden.

Für die Fourierzerlegung gibt es mehrere Varianten in reeller und komplexer Form. Zur Veranschaulichung soll die bekannteste reelle Form angegeben werden<sup>22</sup> (siehe [2]).

$$\mathbf{u}(t) = \frac{\mathbf{U}_{a0}}{2} + \sum_{k=1}^{\infty} \left( \mathbf{U}_{ak} \cos(k \ \omega \ t) + \mathbf{U}_{bk} \sin(k \ \omega \ t) \right)$$

mit

$$U_{ak} = \frac{1}{\pi} \int_{-\pi}^{\pi} u(\omega t) \cos(k \omega t) d\omega t \qquad \text{für } K = 0, 1, 2, ...$$
$$U_{bk} = \frac{1}{\pi} \int_{-\pi}^{\pi} u(\omega t) \sin(k \omega t) d\omega t \qquad \text{für } K = 1, 2, ...$$

(2.10)

Im allgemeinen Fall entstehen unendlich viele Summanden  $U_{ak}$  und  $U_{bk}$ . Alle vorkommenden Frequenzen sind immer genau ganze Vielfache der Grundfrequenz (Oberschwingungen). Für alle wichtigen Signalformen können diese Reihen aus Tafeln entnommen werden (z.B. [4]). Praktisch kann immer nach einer endlichen Anzahl Summanden abgebrochen werden, schon deshalb, weil alle realisierten Systeme eine endliche Bandbreite haben.

In Umkehrung werden gewünschte Signale aus mehreren Sinussignalen zusammengesetzt.



Abb. 2.33: Signal aus vielen Quellen für Oberschwingungen

Da das menschliche Ohr keine Phasenlage wahrnimmt und somit die Synchronisation entfallen kann, wird insbesondere im Audiobereich und bei Musikinstrumenten (z.B. Register der Orgel, elektronische Register ...) diese Methode genutzt.

Die Zeitfunktion u(t) und die Darstellung des Frequenzspektrums ( $U_{ak}$  und  $U_{bk}$  oder  $U_{ck}$  und  $\phi_k$  z.B. als Balkendiagramme) haben völlig äquivalente Informationen über den Vorgang.

Bei der Arbeit mit Spektren lässt sich eine Reihe von Regeln erkennen und nutzen.

1. Symmetrie der Zeitfunktion gegenüber der Achse im Zeitnullpunkt



Abb. 2.34: Symmetrie gegenüber der Achse im Zeitnullpunkt

```
Dr. Erich Boeck
```

<sup>&</sup>lt;sup>22</sup> Weitere Formen folgen z.B. nach Zusammenfassen von  $U_{ak} \cos(k \omega t) + U_{bk} \sin(k \omega t) = U_{ck} \cos(k \omega t + \varphi_k)$ mit  $U_{ck} = \sqrt{U_{ak}^2 + U_{bk}^2}$  und  $\varphi_k = \arctan(U_{bk} / U_{ak})$  oder von  $(U_{ak} + jU_{bk})(\cos(k \omega t) + j\sin(k \omega t)) = \underline{U}_{ck} e^{jk \omega t}$ .

Liegt Spiegelsymmetrie f(-t) = f(t) gegenüber der Achse im Zeitnullpunkt vor, können nur cos-Funktionen (also U<sub>ak</sub>) vorhanden sein (alle U<sub>bk</sub>=0).

Bei Unsymmetrie f(-t) = -f(t) können dagegen nur sin-Funktionen (also U<sub>bk</sub>) vorhanden sein (alle U<sub>ak</sub>=0).

2. Symmetrie der Zeitfunktion bezüglich ihrer Kurvenform



Abb. 2.35: Symmetrie gegenüber der Kurvenform

Gilt für die Kurven f(-t) = f(t) oder f(-t) = -f(t) und f(t+T/2) = -f(t) (T Periodendauer), können zusätzlich zu Punkt 1. nur ungeradzahlige Oberschwingungen auftreten (k = 3, 5, 7, 9...).

3. Es können natürlich beide Fälle kombiniert (addiert) sein und/oder zusätzlich ein Gleichanteil vorhanden sein.

Beide Regeln sind sowohl zur Kontrolle der Plausibilität von Messungen unerlässlich als auch zur Aufwandsreduzierung bei Berechnungen sehr hilfreich.

### 2.2.3 Wichtige Testsignale zur Analyse von Schaltungen

Natürlich ist ein sinusförmiges Signal das wichtigste Testsignal sowohl bei der messtechnischen Analyse wie bei einer Simulation als auch bei einer analytischen Untersuchung.



#### **Abb. 2.36: Beispiel für ein sinusförmiges Signal und dessen Spektrum** Ein System wird mit sinusförmigen Signalen des gesamten interessierenden Frequenzbereiches getestet. Die Ergebnisse geben ein umfassendes Bild über die Eigenschaften dieses Systems.

Ein Rechtecksignal wird insbesondere eingesetzt, um die Dauer von Anstiegs- und Abfallflanken ( $t_{an/ab}$  von 0,1 bis 0,9 $\cdot$ Û) sowie das Überschwingen mit einem Oszilloskop zu analysieren.

$$u(t) = \begin{cases} \hat{U} & \text{für } 0 \le \omega t \le \pi \\ 0 & \text{für } \pi \le \omega t \le 2\pi \end{cases} \text{ mit Periode } \omega T = 2\pi$$
$$u(t) = \hat{U}/2 + \frac{2\hat{U}}{\pi} \left( \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + ... \right)$$
$$\begin{pmatrix} \hat{U} = \hat{U}/2 + \frac{2\hat{U}}{\pi} \left( \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + ... \right) \\ \hat{U} = \hat{U}/2 + \frac{2\hat{U}/2}{\pi} \left( \sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + ... \right)$$

#### Abb. 2.37: Beispiel für ein Rechtecksignal und dessen Spektrum

Die Anstiegs- und Abfallflanken können auch aus dem Frequenzgang bestimmt werden. Ein Dreiecksignal kann genutzt werden, um die Linearität von Systemen zu analysieren. Diese gibt es als symmetrisches Dreieck und als "Sägezahn".

```
Dr. Erich Boeck
```



Abb. 2.38: Beispiel für ein Dreiecksignal und dessen Spektrum Dazu wird eine genügend langsam steigende Flanke genutzt (für vernachlässigbare Übergangseffekte). (Bei nichtlinearen Verzerrungen treten zusätzliche Frequenzen auf, die das Spektrum verändern.)

### 2.2.4 Analyse modulierter Signale

Ein hochfrequenten Trägersignal kann in seiner Amplitude ( $\hat{U}_{HF}$ ), in seiner Frequenz ( $\omega_{HF}$ ) oder in seiner Phase ( $\phi_{HF}$ ) moduliert werden.  $u_{HF}(t) = \hat{U}_{HF} \sin(\omega_{HF}t + \phi_{HF})$ 

Die **Amplitudenmodulation** wurde als Erste genutzt. Sie entsteht durch Multiplikation der Amplitudenhüllkurve mit einer konstanten hochfrequenten Schwingung. Die Amplitudenhüllkurve enthält das niederfrequente Nutzsignal (hier sinusförmiges Testsignal).

$$u(t) = \underbrace{\hat{U}(1 - m \cdot \sin\omega_{1}t)}_{NF \text{ Hüllkurve}} \underbrace{\frac{\hat{U}(1 - m \cdot \sin\omega_{1}t)}{HF}}_{HF} (= \hat{U}(t) \sin\omega_{2}t)$$

Die Berechnung des Spektrums (oder der Fourierreihe) ergibt für (2.11) eine endliche Anzahl Reihenglieder und erfolgt am einfachsten mit den Regeln für trigonometrische Funktionen<sup>23</sup>.

$$\mathbf{u}(t) = \hat{\mathbf{U}} \cdot \sin\omega_2 t - \hat{\mathbf{U}} \frac{m}{2} \left[ \cos(\omega_1 - \omega_2)t - \cos(\omega_1 + \omega_2)t \right]$$
(2.12)

(2.11)



#### Abb. 2.39: Beispiel für ein amplitudenmoduliertes Signal und dessen Spektrum

Da der Modulationsgrad (m) maximal 1,0 werden kann (in der Praxis wird bei guten Modulatoren ca. 0,8 erreicht), wird die Leistung (P ~ u<sup>2</sup>) der beiden alle Informationen enthaltenden Seitenbänder P<sub>Nutz</sub> gegenüber der Trägerleistung P<sub>Träger</sub> zu

$$P_{Nutz} = 2(m\hat{U}/2)^2 = m^2\hat{U}^2/2 < \frac{1}{2}\hat{U}^2 = \frac{1}{2}P_{Träger}.$$

<sup>&</sup>lt;sup>23</sup> sinx · siny =  $\frac{1}{2} [\cos(x-y) - \cos(x+y)]$ 

Zum anderen kann aus Abb. 2.39 die erforderliche Bandbreite z.B. für eine Musikübertragung abgeleitet werden. Soll die Übertragung bis  $\omega_{NF} = 2\pi \cdot 15$  kHz (HiFi-Norm) stattfinden, wird zwischen der untersten ( $\omega_{HF} - \omega_{NF}$ ) und der obersten Frequenz ( $\omega_{HF} + \omega_{NF}$ ) die Bandbreite  $\Delta \omega_B = 2\omega_{NF} > 2\pi \cdot 30$  kHz (ohne Stereoübertragung). Eine Einseitenbandmodulation mit unterdrücktem Träger kann sowohl das Leistungsverhältnis verbessern als auch die Bandbreite verringern; es muss aber vor der Demodulation beides wiederhergestellt werden.

#### Bei Modulation und Multiplikation entstehen neue Frequenzen im Gegensatz zur Addition.

Die Demodulation kann bei der Amplitudenmodulation

- entweder durch eine Gleichrichtung und anschließende Glättung
- oder durch nochmalige Multiplikation <sup>24</sup> (Überlagerung) mit cosω<sub>2</sub>t bei (2.12) sowie anschließender Tiefpassfilterung

erfolgen (siehe Abb. 2.40).





Bei einer Überlagerung entstehen alle Frequenzen mit +  $f_2$  und mit –  $f_2$ . Dabei werden aus  $f_2$ – $f_2$  ein nicht störender Gleichanteil und  $\cos[2\pi(f_2-f_1) - 2\pi f_2] = \cos(2\pi f_1)$ ; d.h., dieses spiegelt sich zu  $f_1$  dazu <sup>25</sup>. (Dieses Verfahren wird normalerweise nicht zu einer einfachen Amplitudendemodulation genutzt.)

Das Überlagerungsverfahren wird aber allgemein zur Frequenzumsetzung angewandt. Das Prinzip soll am Überlagerungsempfänger (Superhet–Empfänger) mit Zwischenfrequenzverstärker dargestellt werden Abb. 2.41.



### Abb. 2.41: Prinzip des Überlagerungsempfängers

Die Oszillatorfrequenz wird gemeinsam mit der Frequenz des Vorkreises (oder des Empfangsfilters) so abgestimmt, dass entweder  $f_{HF} - f_{Osz}$  oder  $f_{Osz} - f_{HF}$  immer genau  $f_{ZF}$  ergibt. Nach Wahl der Variante muss die andere (die Spiegelfrequenz, z.B.  $f_{Osz} + f_{ZF} = f_{HF}$  und  $f_{Osz} - f_{ZF} = f_{Spiegel}$ ) durch den Vorkreis verhindert werden (Spiegelselektion sperrt  $f_{Spiegel}$ ). Das Ergebnis ist

- eine konstante ZF-Frequenz  $f_{ZF}$  (unabhängig von der Eingangsfrequenz  $f_{HF}$ ),
- ein hochwirksamer ZF-Verstärker als Resonanzverstärker mit günstiger Frequenz, Bandbreite und Verstärkung sowie

<sup>&</sup>lt;sup>24</sup> Bei einer reinen Multiplikation haben die Hüllkurven den Gleichanteil Null und es entsteht im Unterschied zur Modulation kein Träger. Dadurch würde sich bei einer einfachen Gleichrichtung die Frequenz verdoppeln. Darüber hinaus entstehen in den Einschnürungspunkten Phasensprünge von 180°. (Siehe auch Fußnote 23). <sup>25</sup> Hierbei spielt die Phase eine Rolle (sinx =  $-\sin(-x)$ ); Nutzung bei phasenempfindlicher Gleichrichtung.

• viele Filterkreise hintereinander (normalerweise 5 bis 7), um insgesamt eine steile Flanke der Filterung und somit eine hohe Trennschärfe zu erreichen.

Dieses Prinzip brachte den Durchbruch in der Empfangstechnik und wird bis heute angewandt. In modernen Empfängerschaltkreisen sind lediglich die LC-Bandfilter durch PLL-Kreise<sup>26</sup> ersetzt worden.

Nach gleichem Prinzip findet auch die Frequenzumsetzung zur Trennung von Bild und Ton beim Fernsehempfang oder die Umsetzung der Signale von Fernsehsatelliten im LNS statt, um danach eine Weiterleitung mit einem Koaxialkabel zu ermöglichen.

Durch Multiplikation (Überlagerung) kann somit ein Frequenzband in einen fast beliebigen gewünschten anderen Frequenzbereich umgesetzt werden.

Die **Frequenzmodulation** wurde ursprünglich entwickelt, um einen geringeren Bedarf an Bandbreite zu erreichen. Das erwies sich aber als Trugschluss. Liegt die Information in der Frequenz, erhalten wir mit einem sinusförmigen Testsignal  $\omega_S$  und dem Träger  $\omega_T$ 

(2.13)

 $\omega(t) = \omega_{\rm T} (1 + {\rm m} \cdot \cos \omega_{\rm S} t) = \omega_{\rm T} + \Delta \omega \cdot \cos \omega_{\rm S} t^{-27}$ 





Da in Abb. 2.42 der Bereich von  $\omega(t)$  dargestellt ist, entspricht dies nicht dem Spektrum (dieses muss aus zeitunabhängigen Sinusanteilen bestehen).

Um im Signal  $u_{HF}(t) = \hat{U}_{HF} \sin(\omega_{HF}t + \varphi_{HF})$  die Information in  $\omega_{HF}$  zu modulieren, muss davon ausgegangen werden, dass z.B. die Funktion ursprünglich "cos  $\Phi$ " lautet. Diese wird nur für den Fall, dass  $d\Phi/dt = \text{const} = \omega$  ist, zu "cos  $\omega t$ ". In unserem Fall ergibt sich

$$\Phi(t) = \int_{0}^{t} \omega(t) dt = \int_{0}^{t} (\omega_{T} + \Delta \omega \cdot \cos \omega_{S} t) dt$$
$$\Phi(t) = \omega_{T} t + \frac{\Delta \omega}{\omega_{S}} \cdot \sin \omega_{S} t \qquad \text{mit } \Delta \varphi = \frac{\Delta \omega}{\omega_{S}} = \frac{\Delta f}{f_{S}}$$

und damit kann das frequenzmodulierte Signal geschrieben werden.

$$\mathbf{u}(t) = \hat{\mathbf{U}}_{\mathrm{T}} \cos \left( \omega_{\mathrm{T}} t + \frac{\Delta \omega}{\omega_{\mathrm{S}}} \cdot \sin \omega_{\mathrm{S}} t \right)$$
(2.14)

In (2.14) ist eine konstante Amplitude zu erkennen. Der Phasenhub  $\Delta \phi$  wird aber gegenüber dem Frequenzhub  $\Delta f$  mit f<sub>s</sub> dividiert und somit für höhere Signalfrequenzen verkleinert. Das Signal in (2.14) ist für unser Testsignal ein stationäres periodisches Zeitsignal und es kann

<sup>&</sup>lt;sup>26</sup> Phasenregelkreis mit entsprechenden Parametern (Er kann gut als IC realisiert werden.)

<sup>&</sup>lt;sup>27</sup> Nur diese Form von  $\omega(t)$  wird unter Frequenzmodulation verstanden  $u(t) = \hat{U}_{s} \cos \omega_{s} t \rightarrow \omega_{T} + \Delta \omega \cos \omega_{s} t = \omega(t)$ .

das **Spektrum** nach der Fourierreihe berechnet werden. Die Lösung der Integrale von (2.10) ergibt relativ komplizierte Funktionen.

$$u(t) = \hat{U}_{T} \begin{cases} J_{0}(\Delta \varphi) \cos(\omega_{T}t) + J_{1}(\Delta \varphi) \left[ \cos(\omega_{T} + \omega_{S})t - \cos(\omega_{T} - \omega_{S})t \right] \\ + J_{2}(\Delta \varphi) \left[ \cos(\omega_{T} + 2\omega_{S})t + \cos(\omega_{T} - 2\omega_{S})t \right] \\ + J_{3}(\Delta \varphi) \left[ \cos(\omega_{T} + 3\omega_{S})t - \cos(\omega_{T} - 3\omega_{S})t \right] + \dots \end{cases}$$

$$(2.15)$$

Die Koeffizienten  $J_n(\Delta \varphi)$  in (2.15) sind Besselfunktionen n-ter Ordnung 1. Art der Variablen  $\Delta \varphi$  (diese können Tabellen entnommen werden).



Abb. 2.43: Spektrum der Frequenzmodulation mit einem Testsignal

Wenn alle Seitenbandfrequenzen, die kleiner sind als 10% der Amplitude des unmodulierten Trägers, vernachlässigt werden, wird die notwendige Bandbreite nach Carson näherungsweise

$$\Delta f_{B \min} = 2(\Delta \phi + 1)f_{S \max}$$
 für  $\Delta \phi > 1$ .

Danach sind auf jeder Seite des Trägers  $\Delta f_{B \min}/2f_{S \max} = \Delta \phi + 1$  Seitenbandfrequenzen erforderlich (in Abb. 2.43 ist  $\Delta \phi$  ca. 2, somit schon die vierte Seitenbandfrequenz unter 10%).

Für den UKW Rundfunk bedeutet dies mit der Festlegung des Frequenzhubs auf  $\Delta f = 75$  kHz, dass für HiFi-Qualität mit  $f_{S max} = 15$  kHz der Phasenhub  $\Delta \phi = 5$  und die notwendige Bandbreite 180 kHz (bzw. die Anzahl Seitenbandfrequenzen 6) werden. Bei Beibehaltung von  $\Delta \phi = 5$  und  $f_{S max} = 60$  kHz (Stereo mit RDS) werden nicht ganz 400 kHz benötigt (bei ebenfalls 6 Seitenbandfrequenzen).

Weil  $\Delta \phi = \Delta f/f_s$  ist, würde für hohe Signalfrequenzen bei konstantem Frequenzhub  $\Delta f$ , der die Signalamplitude repräsentiert, die Übertragungsqualität sinken <sup>28</sup>. Um das zu verhindern, werden die hohen Frequenzen in der Amplitude vor der Modulation verstärkt – Präemphase. Das geschieht durch eine Anhebung hoher Frequenzen mittels zusätzlichem RC - Hochpass mit einer Zeitkonstante von 50 µs (UKW in Europa). Umgekehrt müssen die hohen Frequenzen im Empfänger nach der Demodulation wieder abgesenkt werden – Deemphase. Das erfolgt durch einen RC - Tiefpass mit gleicher Zeitkonstante.

Zur Frequenzmodulation muss direkt bei der Schwingungserzeugung die Frequenz beeinflusst werden. Das geschieht im einfachsten Fall durch ein Kondensatormikrofon oder durch einen spannungsgesteuerten elektronisch realisierten Blindwiderstand. Eine moderne Variante insbesondere für Kleinanwendungen behandelt Aufgabe 2.2.4.

Die Demodulation kann bei der Frequenzmodulation nicht so einfach erfolgen. Zuerst sind alle Amplitudenstörungen durch einen Begrenzer zu beseitigen (Amplitude hat keine gewollte Information). Danach wird

 $<sup>^{28}</sup>$  Das Signal - Rausch - Verhältnis ist etwa proportional zu  $\Delta \phi$  und würde deutlich schlechter werden.

- **entweder** durch einen Flanken-, Phasen- (bzw. Verhältnis-) bzw. Zähldiskriminator in eine Amplituden-, Phasen- oder Pulsmodulation gewandelt und mit einem AM-Demodulator (Gleichrichter), phasenempfindlichen Gleichrichter (Verhältnis-gleichrichter, Ringmodulator) bzw. nur einen Tiefpass
- oder aber in heutiger Zeit durch einen PLL Demodulator demoduliert.



Abb. 2.44: Prinzip des Flankendiskriminators und der PLL-Demodulation

Die Filterkurve in Abb. 2.44 wird so justiert, dass die Flanke die FM in eine AM wandelt. Beim PLL-Kreis (Phasenregelkreis) wird der VCO (spannungsgesteuerter Oszillator) der Frequenz der FM nachgeführt, so dass die Regelspannung exakt dem NF-Signal entspricht <sup>29</sup>. Diese Anordnung kann sehr gut als integrierte Schaltung realisiert werden.

Die Phasenmodulation ist der Frequenzmodulation sehr ähnlich, aber es wird

$$\Phi(t) = \omega_{\rm T} t + \Delta \varphi \cdot \sin \omega_{\rm S} t \quad \text{mit} \quad \Delta \varphi = \omega_{\rm S} \cdot \Delta \omega.$$

Die Amplitudeninformation (u(t) =  $\hat{U}_{S}\sin\omega_{S}t \rightarrow \Delta\phi\sin\omega_{S}t = \Delta\phi(t)$ ) steckt hierbei direkt in  $\Delta\phi$ . Diese Modulation wird nur in Spezialfällen genutzt.

Insgesamt zeigt sich, dass zwei äquivalente Betrachtungsweisen bzw. Darstellungsweisen für Signale und Systeme – die Zeitdarstellung und die Frequenzdarstellung – bestehen.

### 2.2.5 Kennwerte und Aufgaben

Kennwerte eines Signals sind stark abhängig von der Signalform z.B.

- Sinussignal:  $\hat{U}$ ,  $\omega$  und ev.  $\phi$
- Rechtecksignal:  $\hat{U}$ ,  $U_{Gleich}$  (oder  $\hat{U}_{-}$  und  $\hat{U}_{+}$ ), Tastverhältnis, Periodendauer und ev. Anstiegszeit der Flanke<sup>30</sup>
- Dreiecksignal:  $\hat{U},\,U_{Gleich}$  (oder  $\hat{U}_{-}$  und  $\hat{U}_{+}),$  Anstiegzeit und Abfallzeit (zusammen Periodendauer)

Kennwerte eines Frequenzspektrums (gemessen oder nach der Fourierreihe).

- Amplitudenwerte von  $n \cdot \omega$  als  $U_{ck}$  (oder die Beträge von  $U_{ak}$  und  $U_{bk}$ )
- Phasenlage von  $n \cdot \omega$  als  $\phi_k$  (oder als Vorzeichen der  $U_{ak}$  und  $U_{bk}$ )

Kennwerte eines amplitudenmodulierten Signals

- Amplitude des unmodulierten Trägers  $\hat{U}$
- Frequenz des Trägers ω<sub>T</sub>
- Modulationsgrad  $m = \hat{U}_S / \hat{U}_T$
- Bandbreite des modulierten Signals (oder maximale Signalfrequenz)

 $<sup>^{29}</sup>$  Bei der Regelung gibt es als Regelabweichung eine Phasenabweichung aber keine Frequenzabweichung.  $^{30}$  von 0,1 bis 0,9 Ú

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

Kennwerte eines frequenzmodulierten Signals

- Amplitude des Trägers Û
- Frequenz des unmodulierten Trägers  $\omega_T$
- Frequenzhub  $\Delta \omega$ , daraus folgender Phasenhub  $\Delta \phi$
- maximale Signalfrequenz
- Bandbreite des modulierten Signals

### Aufgabe 2.2.1

Addition der Teilschwingungen des Rechtecksignals aus Abb. 2.37 z.B. mit einem Simulationsprogramm bei  $\hat{U} = 5 \text{ V}, \text{ T} = 2 \text{ ms.}$ 

- Frage 1: Wie sehen die Grund- und die ersten Oberschwingungen (n = 3, 5, 7) einzeln aus?
- Frage 2: Wie sieht das Signal bei schrittweiser Addition der Oberschwingungen (von der 3. bis zur 7.) aus?

Frage 3: Wie sehen das Amplituden- und das Phasenspektrum aus?

### Aufgabe 2.2.2

Spektrum eines amplitudenmodulierten Signals mit  $\hat{U}_T = 100 \text{ V}$ ,  $f_T = 500 \text{ kHz}$  und zwei Sinussignalen  $\hat{U}_1 = 30 \text{ V}$ ,  $f_{S1} = 80 \text{ Hz}$  und  $\hat{U}_2 = 20 \text{ V}$ ,  $f_{S2} = 12000 \text{ Hz}$  (entspricht einem Mittelwellensignal)

Frage 1: Wie sieht die Darstellung des Spektrums der Beträge der Amplituden aus? Frage 2: Welche Übertragungsbandbreite ist mindestens erforderlich?

### Aufgabe 2.2.3

Drei Sprachsignale ( $f_M = 200 \dots 3600 \text{ Hz}$ ) sollen Frequenzmultiplex übertragen werden. Zwischen den Übertragungskanälen ist ein Frequenzabstand von 400 Hz vorzusehen und der erste Kanal soll bei 4 kHz beginnen.

Frage 1: Welche Oszillatorfrequenzen können für eine Frequenzumsetzung gewählt werden?

- Frage 2: Es wird eine Multiplikationsschaltung genutzt, welche Frequenzen müssen danach wieder entfernt werden?
- Hinweis: Im Vergleich mit einer Amplitudenmodulation soll immer nur ein Seitenband übertragen werden.

### Aufgabe 2.2.4

Ein VCO wird zur Frequenzmodulation genutzt. Seine Ausgangsspannung ist konstant 10 V.  $U(f_T)$  dient der Feinabstimmung der Trägerfrequenz zu  $f_T = 100$  MHz. Das NF-Signal ist  $\hat{U}_S cos \omega_S t$ .

Dabei wurde  $\hat{U}_s$  so gewählt, dass  $\Delta f = 75$  kHz wird. Die Testsignalfrequenz beträgt einmal  $f_s = 1$  kHz und zum anderen 10 kHz. Siehe Abb. 2.45.



Abb. 2.45: Kennlinie, Blockschaltbild eines VCO und Schaltung der Präemphase

Frage 1: Wie lauten  $\omega(t)$ ,  $\Delta \varphi$  und u(t)?

- Frage 2: Um wie viel wird das Signal von 10 kHz durch eine Präemphase ( $\tau = C_1 R_1 = 50 \ \mu s$ ) angehoben, wie sieht qualitativ der Frequenzgang aus (bis ca. 20 kHz)?
- Hinweis: Z<sub>1</sub> sinkt mit steigender Frequenz und  $|v| = R_F/Z_1$  steigt gegenüber  $v(f = 0) = R_F/R_1$ . Zusatzaufgabe: Simulieren Sie die Anordnung von Abb. 2.45!

#### Nichtperiodische Signale 3

### 3.1 Nichtperiodische Signale endlicher Länge

#### 3.1.1 Behandlung mit der Fouriertransformation

Sind nichtperiodische Signale von endlicher Länge, kann mit der Fouriertransformation eine Zerlegung in ein kontinuierliches endliches Frequenzspektrum erfolgen.

Die Reihen- wird dabei zu einer Integralform (siehe [2]).

$$u(t) = \frac{1}{\pi} \int_{0}^{\infty} [a(\omega) \cos \omega t + b(\omega) \sin \omega t] d\omega$$
  
mit  
$$a(\omega) = \int_{-\infty}^{\infty} u(t) \cos(\omega t) dt$$
$$b(\omega) = \int_{-\infty}^{\infty} u(t) \sin(\omega t) dt$$
(3.1)

Gilt für das Signal u(t) = 0 für  $t < t_{Anfang}$  und  $t > t_{Ende}$ , liegt eine endliche Signaldauer vor und die Integrale sind konvergent. Im Unterschied zur Reihe treten alle Frequenzen auf (nicht nur ganze Vielfache der Signaldauer T =  $t_{Ende} - t_{Anfang}$ ). Alle Frequenzen sind stationär im Zeitraum von  $-\infty < t < \infty$  vorhanden, heben sich bis t<sub>Anfang</sub> und nach t<sub>Ende</sub> gegenseitig völlig auf und ergeben nur während der Signaldauer gerade in ihrer Summe das Signal. Das Frequenzspektrum ist also zeitkonstant in Beträgen und Phase. Das ist nicht wie in Abb. 2.33 messtechnisch nachvollziehbar, sondern als rein mathematischer Bildbereich aufzufassen.

Auch hier gilt, dass zwei mathematisch äquivalente Betrachtungs-/Darstellungsweisen für Signale und Systeme – die Zeitdarstellung und die Frequenzdarstellung – bestehen.

Alle wichtigen Signale sind in Tabellen aufgeführt. Es gibt andere Schreibweisen für die Fouriertransformation (insbesondere komplexe Formen)<sup>32</sup>. Besonders genutzt werden heute numerische Programme. Durchgesetzt hat sich ein besonders schneller Algorithmus – die FFT (Fast-Fourier-Transformation).

Auch für derartige Signale kann eine Berechnung nach dem Überlagerungssatz erfolgen; das Ergebnis stellt aber in der Regel kein Standardsignal dar und muss graphisch ausgewertet werden. Ein Simulationsprogramm ist hier also vorzuziehen.

Die Hauptanwendung liegt in der informationstheoretischen Signalanalyse. Dazu sind eine Reihe weiterer Transformationen oder Verfahren entwickelt worden (z.B. die diskrete Fouriertransformation, zeitabhängige Kurzzeitspektren, die Hilberttransformation oder die Korrelationsanalyse), siehe Spezialliteratur z.B. [4].

 $a(\omega)\cos(k\omega t) + b(\omega)\sin(k\omega t) = c(\omega)\cos(k\omega t + \varphi(\omega))$  mit  $c(\omega) = \sqrt{a(\omega)^2 + b(\omega)^2}$  und  $\varphi(\omega) = \arctan(b(\omega) / a(\omega))$ oder von  $(a(\omega) + jb(\omega))(\cos(\omega t) + j\sin(\omega t)) = c(\omega)e^{j\omega t}$ .

<sup>&</sup>lt;sup>31</sup> Der Faktor  $1/\pi$  erscheint in mancher Literatur auch vor den Integralen der unteren Zeile von (3.1). Er ist aber zusammen mit d $\omega$  günstiger platziert. <sup>32</sup> Auch hier können weitere Formen definiert werden z.B. nach Zusammenfassen von

### 3.1.2 Diskrete Signale und diskrete Fouriertransformation

Diskrete Signale haben nur zu diskreten Zeitpunkten ti einen von Null verschiedenen Wert.

Sie entstehen z.B. durch Messwertabtastung oder A/D-Wandlung. Mathematisch wird dafür die Multiplikation mit einer Folge von Stoßfunktionen<sup>33</sup> genutzt.

$$\mathbf{u}(\mathbf{t}_i) = \mathbf{u}(\mathbf{t}) \cdot \sum_{i=-\infty}^{\infty} \delta(\mathbf{t} - \mathbf{t}_i)$$

Eine Einordnung und ihre Eigenschaften werden in der Gegenüberstellung Abb. 3.1 deutlich.



Abb. 3.1: Gegenüberstellung Signale und Spektren <sup>34</sup>

Die diskreten periodischen Signale sind der eigentliche Gegenstand der diskreten Fouriertransformation (DFT). Dabei lassen sich aus den Abtastwerten der Grundperiode des Signals  $-T/2 \le t < T/2^{-35}$  numerisch direkt die Spektralwerte des Bereiches  $0 \le f \le 1/\Delta t$ ermitteln. Diese sind dann periodisch fortzusetzen.

<sup>&</sup>lt;sup>33</sup> Zur Stoßfunktion siehe 3. von ( 3.5). <sup>34</sup> Es ist  $F(\omega) = a(\omega)$  bzw. Re{ $\underline{U}_{ci}$ } nach ( 3.1) bzw. ( 3.2) (hier ein symmetrisches Rechteck). Ein Unterschied zu

<sup>(2.10)</sup> besteht in a(0) und  $a_0/2$ . Das kontinuierliche Spektrum des Rechtecks entspricht der Si( $\omega$ ) - Funktion. <sup>35</sup> Es muss exakt die Grundperiode sein.

$$u(t_i) = u_i = \sum_{k=0}^{n-1} \underline{U}_{ck} e^{jk \frac{2\pi i}{n}}$$

mit  $t_i = i \Delta t$  und  $T_0 = n\Delta t$  also  $\omega_0 t_i = 2\pi f_0 t_i = 2\pi i/n$  und  $f_i = i f_0 = \frac{i}{n\Delta t}$  $\underline{F}(f_i) = \underline{U}_{ci} = \frac{1}{n} \sum_{k=0}^{n-1} u(t_k) e^{-jk\frac{2\pi i}{n}} \qquad \text{für } i = 0, 1, 2, \dots n-1$ (3.2)

Die in Abb. 3.1 sichtbaren Eigenschaften ermöglichen es, die diskrete Fouriertransformation für weitere Fälle in guter Näherung zu nutzen.

- So kann das diskrete endliche (einmalige) Signal mit der Einschränkung, dass nur das • "abgetastete" Spektrum des Bereiches  $0 \le f \le 1/\Delta t$  bei der Berechnung entsteht, bestimmt werden <sup>36</sup>.
- Das kontinuierliche periodische Signal kann abgetastet werden <sup>36</sup> und die ermittelten Spektralwerte des Bereiches  $0 \le f \le 1/2\Delta t$  sind das diskrete endliche (einmalige)Spektrum.
- Das kontinuierliche endliche (einmalige) Signal kann ebenfalls abgetastet werden <sup>36</sup> und die ermittelten Spektralwerte des Bereiches  $0 \le f \le 1/2\Delta t$  sind dann das abgetastete Spektrum, das periodisch fortzusetzen ist.

In der Regel ist es möglich, das Signal bzw. deren Grundperiode genau 2<sup>n</sup> mal äquidistant abzutasten. In diesem Fall kann der schnelle Algorithmus der **FFT** und nicht die vollständige Umsetzung der DFT ( 3.2) benutzt werden <sup>37</sup>.

Für die praktische Anwendung müssen einige Bedingungen beachtet werden.

- 1. Genau eine (oder mehrere) Grundperioden äquidistant und synchron zur Periode abtasten. Wenn der Abtastwert direkt zu Beginn des Signals liegt, gehört der gleiche Wert der nächsten Periode nicht mehr dazu (er ist nicht der letzte der ersten Periode). Hilfestellung: Die numerische Berechnung ist so, als ob der abgetastete Bereich immer wieder (periodisch) komplett angehängt wird.
- 2. Die Abtastung muss so schnell erfolgen, dass  $1/\Delta t$  so groß ist, dass die Perioden des Spektrums nicht ineinander laufen und so die Grundperiode des Spektrums verfälscht wird (Aliasingfehler) <sup>38</sup>. (Bei Abb. 3.1 ist  $1/\Delta t$  etwas zu klein gewählt.)
- 3. Ist die Abtastung nicht nach 1. und 2. erfolgt, müssen durch Interpolation neue Abtastwerte bestimmt werden. (Z.B. bei nicht äquidistanter Abtastung, bei nicht synchroner Abtastung oder wenn bei der FFT nicht 2<sup>n</sup> Abtastwerte vorliegen.)
- 4. Ist es nicht möglich, die Abtastung so vorzunehmen (z.B. weil die Grundperiode im Rauschen nicht erkennbar ist), kann eine geeignete Fensterfunktion benutzt und die Abtastung dieser zugeordnet werden.
- 5.

Die vier Punkte zeigen, dass bei der praktischen Anwendung der DFT eine gute Vorbereitung der Messung und Sorgfalt erforderlich sind, sonst entstehen unkalkulierbare Fehler.

 <sup>&</sup>lt;sup>36</sup> Bei genügend Abtastpunkten ist das entsprechend genau.
 <sup>37</sup> Dabei werden Symmetrien zur Vereinfachung der numerischen Berechnung von ( 3.2) genutzt.

<sup>&</sup>lt;sup>38</sup> Das Abtasttheorem ergibt eine gleichlautende Aussage, wenn der höchste Frequenzanteil bekannt ist.

## 3.1.3 Beispiel: Analyse von DSL- Signalen

Die vielfältigen modernen Anwendungen der DFT/FFT sollen am Beispiel der Realisierung der Modulation bei einer ADSL-Übertragung untersucht werden. In Abb. 3.2 ist der Ausgangspunkt das zu übertragende Binärsignal. Dieses wird z.B. in ein Schieberegister



Abb. 3.2: Vereinfachtes Prinzip der Sendemodulation bei ADSL

als Datenpuffer eingelesen und so das serielle in ein parallel vorliegendes Signal umgeformt. Mehrere Binärzeichen werden durch eine Quadratur Amplituden Modulation (QAM) zusammengefasst<sup>39</sup> (Multiplexprinzip). Die nun vorliegenden n komplexen Werte werden je einer der parallelen Übertragungsfrequenzen der ADSL-Übertragung zugeordnet. Das realisiert die **inverse** diskrete Fouriertransformation (in ( 3.2) die obere Formel). Die digital vorliegenden n komplexen Werte werden als Amplituden  $\underline{U}_{ck}$  (k = 0 ... n–1) der Frequenzen f<sub>i</sub> dem Algorithmus zugeführt und die digitalen Zeitwerte u(t<sub>i</sub>) in einen Datenpuffer ausgegeben, seriell ausgelesen, digital- analog gewandelt und abschließend durch einen Tiefpass geglättet. Das so in jedem Umformintervall entstehende Zeitsignal ist das vollständige Signal der Diskreten-Multiton-Modulation (DMT) der ADSL-Übertragung mit 256 Frequenzbändern zu je ca. 4 kHz Bandbreite (davon 1. bis 32. für analoges Telefon bzw. ISDN freigehalten, 33. bis 64. für die Übertragung des Upstreams, 65. bis 255. für den Downstream und eins für einen Pilotton zur Synchronisation; zusammen ca. 1,1 MHz; siehe Abb. 3.3).



Abb. 3.3: Prinzipielle Anordnung der Frequenzbänder der DMT bei DSL

Die praktische Realisierung erfolgt mit einem digitalen Signalprozessor (DSP) und zur Steuerung des Ablaufs einem Mikrokontroller, so dass diese Art der Signalverarbeitung mit wenigen integrierten Schaltkreisen im DSL-Modem zu realisieren ist und eben nicht über 200 hochwertige analoge Filter, Oszillatoren und Multiplikatoren zur Frequenzumsetzung benötigt.

<sup>&</sup>lt;sup>39</sup> Z.B. könnte je ein Zeichen dem Real- und dem Imaginärteil des komplexen Wertes (für Betrag und Phase einer Schwingung) zugeordnet werden. Die Verbindung von Amplituden- und Phasenmodulation heißt QAM.

Auf der Empfangsseite erfolgt die Demodulation genau andersherum mit der diskreten Fouriertransformation (in ( 3.2) die untere Formel). Die abgetasteten von analogen zu digitalen Zeitwerten gewandelten  $u(t_k)$  werden zu den Amplituden  $\underline{F}(f_i)$  der Frequenzen  $f_i$  transformiert. Da beide Modems senden und empfangen müssen, findet beides statt, aber mit verschiedenen Up- und Downstreambreiten. Es gibt demnach zwei verschiedene Modems für Provider und Nutzer.

### 3.1.4 Kennwerte und Aufgaben

Kennwerte bei Nutzung der diskreten Fouriertransformation:Abtastfrequenz $1/\Delta t$ Abtastintervall $n \cdot \Delta t$ Anzahl Abtastwerten

Es muss dabei das Abtasttheorem eingehalten werden, damit  $1/2\Delta t \ge f_{max}$  wird und die Perioden im Spektrum sich nicht überlappen (vergleiche Abb. 3.1). Bzw. es muss die Periode der höchsten Frequenz mindestens zweimal abgetastet werden, d.h.  $2\Delta t \ge T_{min} = 1/f_{max}$ .

### Aufgabe 3.1.1

Führe Aufgabe 2.2.1 mit der FFT bei n = 4, 8, 16, 32 und 512 Abtastwerten durch! Frage 1: Wie viele Oberschwingungen werden jeweils bestimmt? Frage 2: Wie ändert sich die Amplitude der jeweils höchsten ermittelten Oberschwingung? Hinweis: Lege den abgetasteten Wert jeweils in die Mitte von  $\Delta t$ .

- Zusatzfrage 1: Wie ändert sich das Spektrum, wenn der erste Wert weggelassen und dafür am Ende ein Wert mehr genutzt wird?
- Zusatzfrage 2: Wie ändert sich das Spektrum, wenn die Periode in n-1 Intervalle eingeteilt wird und dafür ein Intervall angehängt wird?

### 3.2 Schalt- und Übergangsvorgänge

#### 3.2.1 Behandlung mit Hilfe der Laplacetransformation

In der Elektrotechnik müssen oft Übergangsvorgänge insbesondere beim Ein- oder Ausschalten untersucht werden. Das kann entsprechend Abb. 1.1 vereinfacht werden.

Die Konvergenzeigenschaften der Fouriertransformation wurden in der Laplacetransformation durch die Erweiterung der imaginären Kreisfrequenz j $\omega$  mit einem Dämpfungsanteil zur komplexen Variablen p =  $-\delta + j\omega^{40}$  so verändert, dass anfangsseitig begrenzte Vorgänge (z.B. u(t) = 0 für t < 0) transformiert werden können.



Dazu werden in der Literatur mehrere Schreibweisen für die Transformation und die Rücktransformation (inverse Transformation) benutzt.

$$F(p) = L\{f(t)\} \quad \text{oder } F(p) \longleftarrow O \quad f(t) \quad \text{oder } F(p) \leftrightarrow f(t)$$

$$f(t) = L^{-1}\{F(p)\} \quad \text{oder } f(t) \quad \bigcirc \bullet \quad F(p) \quad \text{oder } f(t) \quad \leftrightarrow F(p)$$

$$(3.4)$$

Mit der Laplacetransformation (3.3) können bei t = 0 oder  $t_A$  beginnende Signale (Spannungen, Ströme ...) transformiert werden sowie die Differentiation und Integration zu einfachen algebraischen Operationen umgeformt werden. Die Nutzung zeigt Abb. 3.5.

#### elektrische Schaltung ----- Differentialgleichungen------- Lösung im Originalbereich



**Ohm'sches Gesetz, Strom- und Spannungsteilerregel** 

Abb. 3.5: Schema zur Lösung mittels Laplacetransformation

Einige Rechenregeln verdeutlichen die Eigenschaften der Laplacetransformation.

- 1. Additionssatz:  $L\{a_1f_1(t) + a_2f_2(t)\} = a_1L\{f_1(t)\} + a_2L\{f_2(t)\}$
- 2. Integrationssatz:  $L\{\int_{0}^{t} f(\tau) d\tau\} = \frac{1}{p} L\{f(t)\}$

3. Differentiationssatz: 
$$L\left\{\frac{df(t)}{dt}\right\} = p L\left\{f(t)\right\} - f(t=0)$$
  
 $L\left\{\frac{d^n f(t)}{dt^n}\right\} = p^n L\left\{f(t)\right\} - p^{n-1}f(t=0) - p^{n-2}f^{(1)}(t=0) \dots - f^{(n-1)}(t=0)\right\}$ 

<sup>&</sup>lt;sup>40</sup> In der Mathematik und auch einiger anderen Literatur wird s anstatt p (wie in der Elektrotechnik) verwendet.

4. Verschiebungssatz:  $L{f(t-t_0)} = e^{-t_0 p} L{f(t)}$ 5. Dämpfungssatz:  $L{e^{-\alpha t} f(t)} = F(p+\alpha)$ 6. Faltungssatz:  $L{\int_{0}^{t} f_1(t-\tau) f_2(\tau) d\tau} = L{f_1(t)} \cdot L{f_2(t)}$ 

Bei 3. sind die Anfangsbedingungen f(t = 0) in der Praxis oft Null. Das Integral bei 6. ist das Faltungsintegral, das auch bei Signalanalyse und -synthese eine wichtige Rolle spielt.

Viele wichtige Funktionen sind mit ihren Laplacetransformierten in Tabellen zusammengestellt [5]. Dabei hat man es in der Praxis meist mit rationalen Funktionen zu tun. Zur Umformung gegebener Funktionen in die Formen der Funktionen der Tabellen sind obige Rechenregeln sowie die Partialbruchzerlegung rationaler Funktionen sehr hilfreich. Darüber hinaus steht auch der Residuensatz zur Lösung komplexer Wegintegrale zur Verfügung.

Wichtige Signale und Testsignale bei Übergangsvorgängen sind:

1. 
$$\int_{1}^{1} \int_{1}^{1} \int$$

(3.5) für alle zusammen

Die Transformation einer Differentialgleichung erfolgt mit dem Differentiationssatz. Dabei sind die Anfangsbedingungen bei einem "energielosen" Anfang (z.B. Einschaltvorgang) Null.

Bei "energielosem" Anfang werden die Strom-Spannungs-Beziehungen:

$$u_{L} = L \frac{di}{dt} \leftrightarrow U_{L}(p) = L[p I(p) - i(0)] = pLI(p)$$
$$i_{C} = C \frac{du}{dt} \leftrightarrow I_{C}(p) = C[p U(p) - u(0)] = pCU(p).$$

Damit können auch Schaltungen in den Laplacebereich transformiert werden:

Dr. Erich Boeck

<sup>&</sup>lt;sup>41</sup> Es wird der Verschiebungssatz genutzt.

<sup>&</sup>lt;sup>42</sup> Kurve von 4. insgesamt um T/4 nach rechts verschoben. Es wird der Verschiebungssatz genutzt.

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

#### Festlegung: Widerstände im Laplacebereich

 $\begin{array}{rcl} R & \leftrightarrow & R \\ L & \leftrightarrow & pL \\ C & \leftrightarrow & 1/pC \end{array}$ 

(3.6)

Zur Transformation und Rücktransformation kann die folgende Kurzfassung der Korrespondenzstabellen genutzt werden.

| f(t) immer mal 1(t)                                                                         | F(p)                             | f(t) immer mal 1(t)                                                                                                                        | F(p)                                        |
|---------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| δ(t)                                                                                        | 1                                | $te^{-\alpha t}$                                                                                                                           | $\frac{1}{(p+\alpha)^2}$                    |
| 1                                                                                           | $\frac{1}{p}$                    | $(1-\alpha t)e^{-\alpha t}$                                                                                                                | $\frac{p}{\left(p+\alpha\right)^2}$         |
| $e^{-\alpha t}$                                                                             | $\frac{1}{p+\alpha}$             | $\frac{1}{\alpha^2} \left( 1 - e^{-\alpha t} - \alpha t e^{-\alpha t} \right)$                                                             | $\frac{1}{p(p+\alpha)^2}$                   |
| t                                                                                           | $\frac{1}{p^2}$                  | $\frac{1}{\alpha}\sin(\alpha t)$                                                                                                           | $\frac{1}{p^2 + \alpha^2}$                  |
| $\frac{1}{\alpha}(1-e^{-\alpha t})$                                                         | $\frac{1}{p(p+\alpha)}$          | $\cos(\alpha t)$                                                                                                                           | $\frac{p}{p^2 + \alpha^2}$                  |
| $\frac{1}{\beta-\alpha}(e^{-\alpha t}-e^{-\beta t})$                                        | $\frac{1}{(p+\alpha)(p+\beta)}$  | $\frac{1}{\alpha} e^{-\beta t} \sin(\alpha t)$                                                                                             | $\frac{1}{\left(p+\beta\right)^2+\alpha^2}$ |
| $\frac{1}{\alpha-\beta}(\alpha e^{-\alpha t}-\beta e^{-\beta t})$                           | $\frac{p}{(p+\alpha)(p+\beta)}$  | $e^{-\beta t}\left(\cos(\alpha t)-\frac{\beta}{\alpha}\sin(\alpha t)\right)$                                                               | $\frac{p}{\left(p+\beta\right)^2+\alpha^2}$ |
| $\frac{1}{\alpha\beta(\alpha-\beta)}(\alpha-\beta+\beta e^{-\alpha t}-\alpha e^{-\beta t})$ | $\frac{1}{p(p+\alpha)(p+\beta)}$ | $\boxed{\frac{1}{\alpha^2 - \beta^2} \left[ 1 - e^{-\beta t} \left( \cos(\alpha t) + \frac{\beta}{\alpha} \sin(\alpha t) \right) \right]}$ | $\frac{1}{p[(p+\beta)^2+\alpha^2]}$         |

#### Tabelle 1: Korrespondenzstabelle der Laplacetransformation

Da alle Vorgänge anfangsseitig begrenzt sein müssen, können eigentlich nur Einschaltvorgänge behandelt werden. Für Ausschalt- und Übergangsvorgänge erfolgt die Berechnung so, dass zu Beginn des Vorganges durch Quellen (multipliziert mit  $1(t - t_{Beginn})$ ) der entsprechende Anfangszustand "zwangsweise" hergestellt wird (damit ist der Differentiationssatz vollständig). Somit müssen dann für L und C die Schaltungen entsprechend Abb. 3.6 genutzt werden.



#### Abb. 3.6: Berücksichtigung von Anfangsbedingungen

In Abb. 3.6 beginnen alle Ströme und Spannungen bei t = 0 (das muss bei der Transformation von I(p) und U(p) berücksichtigt werden). Bei i(0) und u(0) ist dies (wegen 1(t)  $\leftrightarrow$  1/p) schon berücksichtigt. (Beginnen die Vorgänge nicht bei t = 0, muss zusätzlich der Dämpfungssatz benutzt werden.) Der Knotenpunkt- und der Maschensatz ergeben in Abb. 3.6 gerade den jeweiligen Differentiationssatz.

Dr. Erich Boeck

### 3.2.2 Beispiel: Analyse des Ein- und Ausschaltens eines Schwingkreises

In AEP I Abschnitt 4.3.3 und 5.2.5 wurden das Ein- und Ausschalten einer RC- und einer RL- Schaltung untersucht. Jetzt können mit akzeptablem Aufwand die Schaltvorgänge an einem Reihenschwingkreis untersucht werden. Dazu wird der Schalter in Abb. 3.7 bei t = 0 einmal von unten nach oben und zum anderen von oben nach unten bewegt. Wir gehen von einem idealen Schalter  $R_{Ein} = 0$ ,  $R_{Aus} = \infty$  und  $t_{Schalt} = 0$  aus <sup>43</sup>.



Abb. 3.7: Ein- und Ausschalten einer Reihenschaltung von R, C und L

Die in den Laplacebereich transformierte Schaltung für das **Einschalten** entsteht, wenn für die Gleichspannungsquelle und den Schalter eine Quelle  $U_0$ ·1(t) eingesetzt wird.



### Abb. 3.8: Reihenschaltung von R, C und L im Laplacebereich für das Einschalten

Der Strom folgt sofort aus dem Ohm'schen Gesetz:

$$I(p) = \frac{U_0/p}{R + 1/pC + pL} = \frac{U_0/L}{p^2 + pR/L + 1/LC} = \frac{U_0/L}{(p + R/2L)^2 + 1/LC - (R/2L)^2}$$
$$I(p) = \frac{U_0/L}{(p + \delta)^2 + \omega_e^2}$$

Die letzte Form entspricht der Korrespondenz in Tabelle 1 (rechte Spalte dritte Zeile von unten) mit der Dämpfung  $\delta = R/2L$  (= $\beta$ ) und der Eigenkreisfrequenz  $\omega_e^2 = \omega_0^2 - \delta^2 (=\alpha^2)^{44}$ . Dabei sind für  $\omega_e$  drei Fälle zu unterscheiden:

- 1. Periodischer Fall:  $\omega_0^2 \delta^2 > 0$ Dieser führt zu einer gedämpften Schwing
- Dieser führt zu einer gedämpften Schwingung mit der Eigenfrequenz  $\omega_e$ .
- 2. Aperiodischer Grenzfall:  $\omega_0^2 \delta^2 = 0$ Dieser führt zu dem schnellsten Übergangsvorgang ohne Nachschwingen.
- 3. Aperiodischer Fall:  $\omega_0^2 \delta^2 < 0$ Dieser führt zu einem langen gedämpften Übergangsvorgang (ohne Schwingen).

Für den **periodischen Fall** wird nach Tabelle 1 (rechte Spalte dritte Zeile von unten)

$$\mathbf{i}(t) = \frac{\mathbf{U}_0}{\mathbf{L}} \frac{1}{\omega_e} e^{-\delta t} \sin(\omega_e t) \cdot \mathbf{1}(t) = \frac{\mathbf{U}_0}{\omega_e \mathbf{L}} e^{-\delta t} \sin(\omega_e t) \cdot \mathbf{1}(t) \,.$$

Das entspricht einer Sinusschwingung, die bei t = 0 beginnt und deren Amplitude  $U_0e^{-\delta t}/\omega_e L$  mit der Zeit abnimmt.

Die Spannungen an R, L und C folgen aus deren Strom-Spannungs-Beziehungen (3.6)<sup>45</sup>.

<sup>&</sup>lt;sup>43</sup> Das kann durch einen Schalttransistor mit Freilaufdiode realisiert werden.

 $<sup>^{44}\</sup>omega_0$  nach ( 2.7)

<sup>&</sup>lt;sup>45</sup> Die entsprechenden Korrespondenzen sind ebenfalls in Tabelle 1 enthalten.



Abb. 3.9: Periodischer Fall R=20 Ω, C=1 µF, L=10 mH

Für den aperiodischer Grenzfall wird nach Tabelle 1 (rechte Spalte oberste Zeile<sup>46</sup>)

$$\mathbf{i}(t) = \frac{\mathbf{U}_0}{\mathbf{L}} \mathbf{t} \mathbf{e}^{-\delta t} \cdot \mathbf{l}(t) \, .$$

Das ergibt einen linearen Anstieg, der schnell zu Null abgedämpft wird.



 $<sup>^{46}</sup>$  Ansonsten müsste der Grenzwert für  $\omega_e \rightarrow 0$  von  $sin \omega_e t/\omega_e$  berechnet werden.

Und für den **aperiodischen Fall** wird nach Linearfaktorzerlegung <sup>47</sup> die Form entsprechend Tabelle 1 (linke Spalte dritte Zeile von unten) erreicht.

$$I(p) = \frac{U_0/L}{p^2 + pR/L + 1/LC} = \frac{U_0/L}{(p + \delta_1)(p + \delta_2)}$$
  
mit  $p^2 + 2\delta p + \omega_0^2 \rightarrow p_{1,2} = -\delta \pm \sqrt{\delta^2 - \omega_0^2} = -\delta_{1,2}$ 

Danach ergibt sich der Strom zu

$$i(t) = \frac{U_0/L}{\delta_1 - \delta_2} (e^{-\delta_2 t} - e^{-\delta_1 t}) \cdot l(t) = \frac{U_0}{R} \frac{\delta}{\sqrt{\delta^2 - \omega_0^2}} (e^{-\delta_1 t} - e^{-\delta_2 t}) \cdot l(t)^{-48}.$$

Es ist zu sehen, dass  $\delta_1$  relativ klein (langsamer Vorgang) dagegen  $\delta_2$  relativ groß (schneller Vorgang) ist und sich zu Beginn beide genau aufheben.

$$u_{R}(t) = U_{0} \frac{\delta}{\sqrt{\delta^{2} - \omega_{0}^{2}}} (e^{-\delta_{1}t} - e^{-\delta_{2}t}) \cdot I(t)$$

$$u_{L}(t) = U_{0} \frac{1}{2\sqrt{\delta^{2} - \omega_{0}^{2}}} (\delta_{2}e^{-\delta_{2}t} - \delta_{1}e^{-\delta_{1}t}) \cdot I(t) \qquad u_{L}(0) = U_{0}$$

$$u_{C}(t) = U_{0} \frac{1}{2\sqrt{\delta^{2} - \omega_{0}^{2}}} \left[ \delta_{1}(e^{-\delta_{2}t} - 1) - \delta_{2}(e^{-\delta_{1}t} - 1) \right] \cdot I(t) \qquad u_{C}(\infty) = U_{0}$$

$$u_{(t), i(t), N, A} = \frac{u_{C}(t)}{12.5} = u_{L}(t)$$

$$u_{L}(0) = U_{0} \frac{u_{L}(0) - U_{0}}{2.5} = u_{L}(t)$$

-10.0 0 0.50m 1.00m 1.50m 2.00m 2.50m 3.00m 3.50m 4.00m 5.00m t/s Abb. 3.11: Aperiodischer Fall R=1000 Ω, C=1 μF, L=10 mH

In allen drei Fällen fällt die Spannung U<sub>0</sub> für t  $\approx 0$  an L und für t  $\rightarrow \infty$  an C ab. Der Strom ist sowohl bei t  $\approx 0$  (weil L keine schnellen Änderungen zulässt) als auch bei t  $\rightarrow \infty$  (weil C keinen Gleichstrom zulässt) Null. Da bei t = 0 der Strom nur beginnt anzusteigen, kann die Spannung am Kondensator erst verzögert beginnen. (Bei Vergrößerung der Kurven ist zu sehen, dass bei t = 0 der Spannungsanstieg du<sub>C</sub>/dt = 0 ist.)

Die in den Laplacebereich transformierte Schaltung für das **Ausschalten** entsteht, wenn für die Gleichspannungsquelle und den Schalter ein Kurzschluss eingesetzt wird. Zusätzlich muss der Anfangswert am Kondensator berücksichtigt werden (Abb. 3.6). Der Kondensator wurde durch den Einschaltvorgang auf  $U_0$  aufgeladen.

<sup>&</sup>lt;sup>47</sup> Ansonsten müsste für ein imaginäres  $\omega_e$  über sin j $\omega_e$ t und dessen Exponentialform gewandelt werden.

 $<sup>{}^{48}\,\</sup>delta_1 - \delta_2 = -2\,\sqrt{\delta^2 - {\omega_0}^2}$ 

Abb. 3.12 ergibt die gleiche Schaltung wie beim Einschalten (Abb. 3.8), nur die Quelle ist umgepolt. Außerdem muss  $U_C(p) = U_0/p + I(p)/pC$  gerechnet werden (siehe Abb. 3.6).



Abb. 3.12: Reihenschaltung von R, C und L im Laplacebereich für das Ausschalten

Da die Rechnung vollkommen gleich erfolgt, werden nur die Ergebnisse angegeben.

Für den periodischen Fall werden:



Abb. 3.13: Periodischer Fall R=20 Ω, C=1 µF, L=10 mH

Der Strom sowie die Spannungen an R und L beginnen im Negativen. Nach Abschluss des Ausschaltvorgangs ist wieder ein energieloser Zustand erreicht. Das wird auch bei den beiden anderen Fällen zu sehen sein.

Für den aperiodischen Grenzfall wird:

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik



Und für den aperiodischen Fall wird:



In Abb. 3.15 ist deutlich zu Beginn der schnelle Anstieg ( $\delta_2$ ) und danach das langsame Ausklingen ( $\delta_1$ ) zu erkennen. Dabei geht u<sub>L</sub> etwas ins positive.

Aus den gemessenen Kurven können die Parameter  $U_0$ ,  $\delta$  und  $\omega_e$  (bzw.  $\delta_1$  und  $\delta_2$ ) bestimmt werden ( $\omega_0$  ist damit ebenfalls festgelegt). Heute <sup>49</sup> ist es sinnvoll mit den Kursorfunktionen des Oszilloskops für drei markante Punkte der Kurven die Werte u bzw. i und t genau zu

<sup>&</sup>lt;sup>49</sup> Früher wurden graphische Methoden mit logarithmischem Papier angewandt.

erfassen. Die Punkte sind günstig zu wählen, um eine hohe Genauigkeit zu erreichen. Z.B. könnte in Abb. 3.10 oder Abb. 3.13 u<sub>C</sub>(t→∞) oder u<sub>C</sub>(t=0) als Punkt zur Bestimmung von U<sub>0</sub> dienen. Vom Strom können die ersten <sup>50</sup> beiden Maxima in gleiche Richtung einmal zur Bestimmung von  $\omega_e = 2\pi/(t_{Max 2} - t_{Max 1})$  genutzt werden. Nach einsetzen von  $\omega_e t_{Max 1} = \pi/2$ des ersten sowie  $\omega_e t_{Max 2} = 2\pi + \pi/2^{51}$  des zweiten Maximums in die Gleichung für den Strom erhalten wir zum anderen  $\delta$  und können danach  $\omega_0$ , L, C und R berechnen.

$$\frac{\mathbf{i}(\mathbf{t}_{\text{Max 1}})}{\mathbf{i}(\mathbf{t}_{\text{Max 2}})} = e^{-\delta t_{\text{Max 1}}} / e^{-\delta t_{\text{Max 2}}} = e^{-\delta (t_{\text{Max 1}} - t_{\text{Max 2}})}$$
$$\delta = \frac{1}{t_{\text{Max 2}} - t_{\text{Max 1}}} \ln \left(\frac{\mathbf{i}(t_{\text{Max 1}})}{\mathbf{i}(t_{\text{Max 2}})}\right)$$

Beim aperiodischen Grenzfall und dem periodischen Fall können ebenfalls die Punkte  $u_C(t\rightarrow\infty)$  oder  $u_C(t=0)$  und darüber hinaus Maxima der Kurven genutzt werden. Z.B. folgt für den aperiodischen Grenzfall:

$$\frac{\mathrm{d}}{\mathrm{dt}}i(t)\Big|_{t_{\mathrm{Max}}} = \frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{U}_{0}}{\mathrm{L}}t\mathrm{e}^{-\delta t}\right)\Big|_{t_{\mathrm{Max}}} = \frac{\mathrm{U}_{0}}{\mathrm{L}}\left(\mathrm{e}^{-\delta t_{\mathrm{Max}}} + t(-\delta)\mathrm{e}^{-\delta t_{\mathrm{Max}}}\right) = 0$$
  

$$\rightarrow \delta t_{\mathrm{Max}} = 1 \quad \rightarrow \quad \delta = \omega_{0} = 1/t_{\mathrm{Max}} \quad \text{und} \quad i(t_{\mathrm{Max}}) = \frac{\mathrm{U}_{0}}{\mathrm{L}}\frac{1}{\delta \mathrm{e}}$$

Damit können außer  $U_0$  auch  $\delta$  und  $\omega_0$  abgelesen sowie anschließend  $\omega_e$ , L, C und R berechnen werden.

Beim aperiodischen Fall kann es sehr ungenau werden, wenn die Maxima recht flach verlaufen. So hat der Strom bei  $t_{Max}$  ein Maximum und die Spannung an der Spule wird gerade bei  $2t_{Max}$  maximal.

$$i(t_{Max}) = \frac{U_0}{R} \frac{\delta}{\omega_0} e^{-\delta t_{Max}} \quad \text{und} \quad i(2 t_{Max}) = 2 \left( i(t_{Max}) \right)^2 \frac{R}{2U_0}$$
  
sowie  $u_L(2 t_{Max}) = -U_0 e^{-\delta 2 t_{Max}}$ 

Daraus lässt sich  $\delta$  und R, danach L,  $\omega_0$  sowie anschließend  $\omega_e$  und C bestimmen.

Somit können alle Parameter ausschließlich aus der Messkurve ermittelt werden.

Eine besondere technische Anwendung hat der aperiodische Grenzfall als schnellster Übergangsvorgang ohne ein Überschwingen. Das ist im Alltag besonders bei Türschließern sichtbar. Bei Anwendungen, für die ein kleines Überschwingen möglich ist, kann mit der Einstellung  $\delta = 0.8 \omega_0$  noch etwas schneller der Endzustand erreicht werden (z.B. oft bei Rechtecksignalübertragungen angewandt).

Systeme zweiter Ordnung (z.B. mit L und C oder mit Feder und Masse) kommen in der Technik vielfältig vor. Sie werden immer durch die Parameter  $\delta$  und  $\omega_0$  bzw.  $\omega_e$  beschrieben und immer muss die Schwingneigung beherrscht werden. Dass ist ausschließlich durch eine entsprechende Dämpfung (in elektrischen Schaltungen nur durch einem Widerstand) möglich. Lediglich bei gewollter Schwingungserzeugung muss die Dämpfung hingegen kompensiert werden (in elektrischen Schaltungen mit aktiven Bauelementen).

<sup>&</sup>lt;sup>50</sup> Sie sind am größten und unterscheiden sich am deutlichsten.

<sup>&</sup>lt;sup>51</sup> Der Sinus wird somit Eins.

### 3.2.3 Übertragungsfunktionen von Systemen

Alle realen Signale beginnen immer zu einer endlichen Zeit und somit kann von einem energielosen Anfangszustand ausgegangen werden.

Mit der Laplacetransformation hat sich für lineare rückwirkungsfreie Vierpole die Methode der Übertragungsfunktionen zur Signal- und Systembeschreibung durchgesetzt.



Abb. 3.16: Vierpol und dessen vereinfachte Darstellung

Definition der Übertragungsfunktion

$$H(p) = \frac{U_2(p)}{U_1(p)} \quad \leftrightarrow \quad g(t)$$

(3.7)

(3.8)

Die Übertragungsfunktion beschreibt lineare rückwirkungsfreie<sup>52</sup> Systeme vollständig und so ergeben sich die Ausgangssignale direkt aus dem Eingangssignal.

$$U_{2}(p) = H(p) \cdot U_{1}(p) \quad \leftrightarrow \quad u_{2}(t) = g(t) * u_{1}(t)$$
$$= \int_{0}^{\infty} g(t - \tau) u_{1}(\tau) d\tau$$

In (3.8) steht "\*" als Symbol für die Faltung mit dem Faltungsintegral und g(t) für die Gewichtsfunktion des Systems. Es ist leicht zu sehen, dass die einfache Multiplikation (vergleiche Multiplikationssatz) im Laplacebereich neben den einfachen Funktionen für die Signale (vergleiche Tabelle 1) erst den Sinn dieser Methode ausmacht.

Zur Messung der Übertragungsfunktionen werden insbesondere die Sprungfunktion und wenn technisch genügend genau realisierbar auch die Stoßfunktion verwendet. Dabei erfolgt die Bestimmung direkt nach der Definition (3.7). Im Falle der Stoßfunktion ( $\delta(t) \leftrightarrow 1$ ) ist u<sub>2</sub>(t) unmittelbar die Gewichtsfunktion g(t) bzw.  $U_2(p)$  die Übertragungsfunktion.

Durch einen formalen Übergang von p zu jo wird aus der Übertragungsfunktion direkt der Frequenzgang des Systems mit Betrag und Phase. Somit ist die Übertragungsfunktion für die Signalverarbeitung eines Systems sehr aussagefähig.

$$\begin{split} H(p) &= -\frac{R_F \| l/p C}{R_1} = -\frac{R_F}{R_1} \frac{1/R_F C}{p + 1/R_F C} \\ H(p) &= v_{u0} \frac{1/\tau}{p + 1/\tau} \end{split}$$
 $1/pC_F$  $\infty$  $U_{A}(p) \quad g(t) = v_{u0} \frac{1}{\tau} e^{-1/\tau}$ und  $F(j\omega) = v_{u0} \frac{\omega_{go}}{j\omega + \omega_{go}}$ U<sub>E</sub>(p Abb. 3.17: Tiefpass mit Operationsverstärker

Beispiel: Tiefpass als Vierpol (vergleiche Aufgabe 2.1.4 und Abb. 2.28)

<sup>&</sup>lt;sup>52</sup> Rückwirkungsfrei bedeutet, eine Belastung des Ausgangs führt zu keiner Beeinflussung des Systemverhaltens. Das ist z.B. bei Operationsverstärkern die Regel. Notfalls sind Operationsverstärker als Trennverstärker einzusetzen.

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik



Abb. 3.18: Ein-, Ausgangssignal sowie Betrag des Frequenzgangs von Abb. 3.17

Sehr vorteilhaft ist die Nutzung von Übertragungsfunktionen bei den vorwiegend in der Signalverarbeitung und Regelungstechnik vorkommenden Kettenschaltungen.



#### Abb. 3.19: Kettenschaltung von Übertragungsgliedern

Dafür wird:

 $\mathbf{H}_{ges}(\mathbf{p}) = \mathbf{H}_1(\mathbf{p}) \cdot \mathbf{H}_2(\mathbf{p}) \cdots \mathbf{H}_n(\mathbf{p})$ 

Viele Untersuchungen insbesondere in der Regelungstechnik sind auch ohne eine Rücktransformation möglich.

### 3.2.4 Kennwerte und Aufgaben

Parameter einiger wichtiger Schwingkreisschaltungen:

| Reihenschwingkreis —                    | $\delta = I$                                                                        | R/2L                   | $\omega_0 = (LC)^{-\frac{1}{2}}$ |
|-----------------------------------------|-------------------------------------------------------------------------------------|------------------------|----------------------------------|
| realer Reihenschwingkreis               | $\delta = 1$                                                                        | l/2CR                  | $\omega_0 = (LC)^{-\frac{1}{2}}$ |
| Parallelschwingkreis                    | $ \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \end{bmatrix} = 1 $                      | l/2CR                  | $\omega_0 = (LC)^{-1/2}$         |
| realer Parallelschwingkreis             | $\delta = I$                                                                        | R/2L                   | $\omega_0 = (LC)^{-\frac{1}{2}}$ |
| Einige wichtige Übertragungsglieder:    |                                                                                     |                        |                                  |
| P – Proportionalglied                   | $u_2 = k u_1$                                                                       | $\leftrightarrow$      | H(p) = k                         |
| I – Integrierglied                      | $u_2 = 1/T \int u_1 dt$                                                             | $\leftrightarrow$      | H(p) = 1/pT                      |
| D – Differenzierglied                   | $u_2 = T du_1/dt$                                                                   | $\leftrightarrow$      | H(p) = pT                        |
| PI – Proportional- + Integrierglied     | $\mathbf{u}_2 = \mathbf{k}  (\mathbf{u}_1 + 1/\mathrm{T}  \mathrm{J} \mathbf{u}_2)$ | $(dt) \leftrightarrow$ | H(p) = k(1 + pT)/pT              |
| $pT_1 - Verzögerungsglied (1. Ordnung)$ | $T du_2/dt + u_2 = k$                                                               | $u_1 \leftrightarrow$  | H(p) = k/(1 + pT)                |
| T <sub>t</sub> – Totzeitglied           | $u_2 = k u_1(t - T_t)$                                                              | $\leftrightarrow$      | $H(p) = k \exp\{-pT_t\}$         |

#### Aufgabe 3.2.1

In Abb. 3.20 sind zwei Signalverläufe dargestellt.



Abb. 3.20: Signalverläufe

Frage: Wie lautet die jeweilige Transformation in den Laplacebereich? Hinweis: Setzen Sie die Signale durch Addition einfacher Signale zusammen, die zu verschiedenen Zeiten beginnen.

```
Dr. Erich Boeck
```

### Aufgabe 3.2.2

Ein idealer Parallelschwingkreis wird von einer Stromquelle  $I_c \cdot 1(t)$  gespeist.



#### Abb. 3.21: Parallelkreis an einer Stromquelle

Frage: Wie sehen die Spannung und die drei Ströme aus? Hinweis: Bei Nutzung von Leitwerten sind alle Rechenschritte und Ausdrücke analog dem Reihenkreis mit "vertauschten" Strömen und Spannungen.

#### Aufgabe 3.2.3

Gegeben ist eine Kapazität C = 200  $\mu$ F, die auf 500 V aufgeladen ist. Der Wickel der Kapazität stellt eine Reiheninduktivität von L = 60  $\mu$ H dar.

Frage: Wie groß muss der Reihenwiderstand zur Entladung für den aperiodischen Grenzfall sein?

### Aufgabe 3.2.4

Ein Tiefpass 2.Ordnung soll ein Signal glätten.



### Abb. 3.22: Tiefpass 2.Ordnung

Frage 1: Wie verläuft die Ausgangsspannung der dargestellten Schaltung, wenn die Eingangsspannung bei t = 0 von 0 auf  $U_0$  springt?

Frage 2: Wie lautet die Übertragungsfunktion  $H(p) = \frac{U_2(p)}{U_1(p)}$ ?

#### Zusätzliche Aufgabe 3.2.5

Ein DC - DC Wandler nach Abb. 3.23 mit L = 100 mH, R = 10  $\Omega$ , U<sub>0</sub> = 10 V, t<sub>E</sub> + t<sub>A</sub> = 1 ms, t<sub>E</sub>/(t<sub>E</sub> + t<sub>A</sub>) = 0,1; 0,5 und 0,9



Abb. 3.23: DC - DC Wandler Schaltung und Prinzipschaltung

Frage 1: Wie ist das Verhältnis der Leistungen der Quelle und des Verbrauchers? Frage 2: Wie groß sind die Mittelwerte von  $u_R$ ,  $i_R$  und  $i_{Eingang}$ ? Hinweis: Näherung: di/dt = const. (entspricht dem Anfang der Exponentialfunktion)

```
Dr. Erich Boeck
```

### 3.2.5 Messung des Ein- und Ausschaltens eines Schwingkreises

Darstellen der Zeitverläufe von Strom und Spannungen an der Induktivität bzw. der Kapazität, Untersuchen der Abhängigkeit der Parameter der Zeitverläufe beim Ein- und Ausschalten von der Größe der Induktivität, der Kapazität, des Widerstandes und der Spannung.

#### Versuchsaufbau:



#### Abb. 3.24: Schaltung des Versuchsaufbaus

Hinweis: Als Messwiderstand ( $R_{Mess}$ ) zur Strommessung werden 10  $\Omega$  eingesetzt.

#### Versuchsdurchführung:

Messung und Darstellen von Strom und Spannungen mit einem Oszillografen, Nutzung einer Rechteckspannung für den Ein- und Ausschaltvorgang, Übergabe der Kurven an einen PC und Auswertung, Vergleich mit berechneten Verläufen und Parametern.

Folgende Untersuchungen geben einen Überblick über das Verhalten:

- 1. Ein- und Ausschaltvorgänge bei U = 5 V, L = 300 mH, C =  $0.22 \mu$ F sowie veränderlichem Widerstand. Stellen Sie den periodischen Fall, den aperiodischen Fall und den Grenzfall dar. Ermitteln Sie den Widerstand für den Grenzfall mit Hilfe des Kurvenverlaufes.
  - 1.1. Bestimmen Sie die Dämpfung, die Eigenfrequenz und die Resonanzfrequenz für  $R = 300 \ \Omega$ .
  - 1.2. Bestimmen Sie den Widerstand und die Dämpfung für den Grenzfall.
  - 1.3. Bestimmen Sie die beiden Zeitkonstanten bei  $R = 5000 \Omega$ .
  - 1.4. Stellen Sie die logarithmische Spirale dar und zeigen Sie daran den aperiodischen Grenzfall.
- 2. Bestimmen Sie R, L und C aus den Messkurven

#### Zusammenfassung der Versuchergebnisse:

- 1. Die dargestellten Kurven stimmen mit Abb. 3.9 bis Abb. 3.11 sowie Abb. 3.13 bis Abb. 3.15. sehr gut überein.
- 2. Die aus den Kurven ermittelten Parameter entsprechen recht gut den Werten der eingesetzten Bauelemente. Nur die Induktivität der Spule weicht deutlich vom Typenschild ab. Die eingesetzte Spule (Vorschaltgerät für eine Hochdrucklampe) ist für 50 Hz vorgesehen (Material des Kerns)  $\omega_e/2\pi$  ist aber ca. 800 Hz.
- 3. Beim aperiodischen Fall ist die Messgenauigkeit auch bei exakter Messdurchführung nicht sehr hoch. Das zeigt eine Fehlerrechnung.

```
Dr. Erich Boeck
```

$$u_{L}(2t_{Max}) = -U_{0} e^{-\delta 2t_{Max}}$$
 nach  $\delta$  aufgelöst ergibt den Fehler

$$\frac{\Delta\delta}{\delta} = \frac{\delta_{\text{Mess}} - \delta_{\text{Soll}}}{\delta_{\text{Soll}}} = -\frac{\Delta t_{\text{Max}}}{t_{\text{Max}}} + \left(\frac{\Delta U_0}{U_0} - \frac{\Delta u_L(2t_{\text{Max}})}{u_L(2t_{\text{Max}})}\right) \ln^{-1} \left(\frac{U_0}{-u_L(2t_{\text{Max}})}\right)^{53}$$

Bei  $U_0 = 5$  V und  $u_L(2t_{Max}) \approx -100$  mV wird  $\ln^{-1}() \approx 0.25$ . Das Hauptproblem ist die Kurvenauflösung wenn bei  $u_L(2t_{Max})$  ein Pixel Unterschied für den Kursor ca. 50 mV ausmachen.

Nach Abklingen des schnellen Vorgangs könnte  $\delta_2$  genauer bestimmt werden. Für technische Zwecke kann bei genügend großem  $\delta_1$  der Vorgang in der Regel als Verzögerung 1. Ordnung allein mit  $\delta_2$  genähert werden.

<sup>&</sup>lt;sup>53</sup> Der Fehler wird z.B. mit dem totalen Differential berechnet.

Dr. Erich Boeck

## 4 Ausblick, weitere Transformationen zur Signalanalyse

Neben der komplexen Rechnung, der Fourierreihe, der Fouriertransformation und der Laplacetransformation wurde bereits die diskrete Fouriertransformation behandelt.

Darüber hinaus gibt es in der Regelungstechnik mit der Z-Transformation auch eine diskrete Laplacetransformation, die für abgetastete Signale und deren Verarbeitung angewandt wird.

Die Fouriertransformation und die diskrete Fouriertransformation können auch in einer zwei-, drei- oder mehrdimensionalen Form (z.B. eine Ortsebene x, y oder ein Ortsraum x, y, z  $\leftrightarrow$ Wellenzahlebene k<sub>x</sub>, k<sub>y</sub> oder ein Wellenzahlraum k<sub>x</sub>, k<sub>y</sub>, k<sub>z</sub>; mit den Wellenzahlen k<sub>x</sub> =  $2\pi / \lambda_x$ , k<sub>y</sub> =  $2\pi / \lambda_y$ , k<sub>z</sub> =  $2\pi / \lambda_z$  – analog zu  $\omega = 2\pi/T$ ) verwendet werden. Das wird insbesondere für die Bildbearbeitung genutzt. So entsprechen Kanten in der Ortsebene hohen Wellenzahlen in der Wellenzahlebene und werden von Kompressionsmethoden (JPEG, MPEG ...) teilweise eliminiert.

Nach dem gleichen Prinzip werden in der Bildbearbeitung verschiedene mathematische Abbildungsfunktionen verwendet, die einen Ortsraum in einen Abbildungsraum transformieren (z.B. Drehungen oder Verzerrungen). Dazu werden die digitalisierten Pixeldaten in der Art der digitalen Transformationen behandelt. Hier liegt die Domäne des Einsatzes der Signalprozessoren.

# 5 Projektaufgabe

Die Projektaufgaben sind weitgehend selbstgesteuert zu wählen, zu konzipieren und in Gruppen zu bearbeiten.

Die Problemstellungen betrafen bisher folgenden Rahmen:

- Messtechnische Untersuchungen des Frequenzverhaltens z.B. von Vorverstärkern, Mikrofonen und Lautsprechern zu ihrer Qualitätsbewertung.
- Untersuchung des Einflusses der Abtastfrequenz bei der Digitalisierung von Audiosignalen.
- Bau und Erprobung einer Audioübertragungsstrecke mit Sender und Empfänger für Frequenzmodulation.
- Untersuchung der Multitonmodulation mit DFT und inverser DFT sowie Demonstration ihrer Funktionsweise mit Programmen auf dem PC.

Die Projektaufgaben beinhalten eine Dokumentation sowie eine Präsentation der erreichten Ergebnisse.

## 6 Literaturverzeichnis

[1] Dörner, Dietrich: Die Logik des Mißlingens, S. 58 und insgesamt, Rowohlt Verlag GmbH 1989

[2] Lunze, Klaus: Theorie der Wechselstromschaltungen, (8. Auflage), S. 60, 127 ff, 211 bis 217 und 221, Verlag Technik GmbH Berlin 1991

[ 3 ] Heumann, Klemens: Grundlagen der Leistungselektronik, (2. Auflage), S. 94 ff, B. G. Teubner Stuttgart 1978

[ 4 ] Fritsche, Gottfried: Signale und Funktionaltransformationen, S. 26 ff, Verlag Technik GmbH Berlin 1985

[5] Bronstein, I. N., Semendjajew, K. A.: Taschenbuch der Mathematik, (19. Auflage), S. 689ff, Verlag Nauka Moskau und BSG B. G. Teubner Verlagsgesellschaft Leipzig 1979